Open Access
2013 PDE Modeling of a Microfluidic Thermal Process for Genetic Analysis Application
Reza Banaei Khosroushahi, Horacio J. Marquez, Jose Martinez-Quijada, Christopher J. Backhouse
J. Appl. Math. 2013(SI19): 1-12 (2013). DOI: 10.1155/2013/767853

Abstract

This paper details the infinite dimensional dynamics of a prototype microfluidic thermal process that is used for genetic analysis purposes. Highly effective infinite dimensional dynamics, in addition to collocated sensor and actuator architecture, require the development of a precise control framework to meet the very tight performance requirements of this system, which are not fully attainable through conventional lumped modeling and controller design approaches. The general partial differential equations describing the dynamics of the system are separated into steady-state and transient parts which are derived for a carefully chosen three-dimensional axisymmetric model. These equations are solved analytically, and the results are verified using an experimentally verified precise finite element method (FEM) model. The final combined result is a framework for designing a precise tracking controller applicable to the selected lab-on-a-chip device.

Citation

Download Citation

Reza Banaei Khosroushahi. Horacio J. Marquez. Jose Martinez-Quijada. Christopher J. Backhouse. "PDE Modeling of a Microfluidic Thermal Process for Genetic Analysis Application." J. Appl. Math. 2013 (SI19) 1 - 12, 2013. https://doi.org/10.1155/2013/767853

Information

Published: 2013
First available in Project Euclid: 14 March 2014

Digital Object Identifier: 10.1155/2013/767853

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI19 • 2013
Back to Top