Open Access
2012 The Hamiltonian System Method for the Stress Analysis in Axisymmetric Problems of Viscoelastic Solids
W. X. Zhang, Y. Bai, F. Yuan
J. Appl. Math. 2012: 1-14 (2012). DOI: 10.1155/2012/945238

Abstract

With the use of the Laplace integral transformation and state space formalism, the classical axial symmetric quasistatic problem of viscoelastic solids is discussed. By employing the method of separation of variables, the governing equations under Hamiltonian system are established, and hence, general solutions including the zero eigensolutions and nonzero eigensolutions are obtained analytically. Due to the completeness property of the general solutions, their linear combinations can describe various boundary conditions. Simply by applying the adjoint relationships of the symplectic orthogonality, the eigensolution expansion method for boundary condition problems is given. In the numerical examples, stress distributions of a circular cylinder under the end and lateral boundary conditions are obtained. The results exhibit that stress concentrations appear due to the displacement constraints, and that the effects are seriously confined near the constraints, decreasing rapidly with the distance from the boundary.

Citation

Download Citation

W. X. Zhang. Y. Bai. F. Yuan. "The Hamiltonian System Method for the Stress Analysis in Axisymmetric Problems of Viscoelastic Solids." J. Appl. Math. 2012 1 - 14, 2012. https://doi.org/10.1155/2012/945238

Information

Published: 2012
First available in Project Euclid: 2 January 2013

zbMATH: 1251.74038
MathSciNet: MR2979461
Digital Object Identifier: 10.1155/2012/945238

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top