Open Access
1982 Absolute convergence of Fourier series on totally disconnected groups
Walter R. Bloom
Author Affiliations +
Ark. Mat. 20(1-2): 101-109 (1982). DOI: 10.1007/BF02390501

Abstract

LetG denote a totally disconnected locally compact metric abelian group with translation invariant metric d and character group ΓG. The Lipschitz spaces are defined by $Lip\left( {\alpha ;p} \right) = \left\{ {f \in L^p \left( G \right):\left\| {\tau _a f - f} \right\|_p = O\left( {d\left( {a,0} \right)^\alpha } \right),a \to 0} \right\},$ where τaf: xf(x-a) and α∈(0,1). For a suitable choice of metric it is shown that Lip (α; p)⊂Lr(ΓG), where α>1/p+1/r−1≧0 and 1≦p≦2. In the case G is compact the corresponding result holds for α>1/r−1/2 and p>2. In addition for G non-discrete the above result is shown to be sharp, in the sense that the range of values of α cannot be extended. The results include classical theorems of S. N. Bernstein, O. Szász and E. C. Titchmarsh.

Citation

Download Citation

Walter R. Bloom. "Absolute convergence of Fourier series on totally disconnected groups." Ark. Mat. 20 (1-2) 101 - 109, 1982. https://doi.org/10.1007/BF02390501

Information

Received: 1 January 1980; Published: 1982
First available in Project Euclid: 31 January 2017

zbMATH: 0492.43004
MathSciNet: MR660128
Digital Object Identifier: 10.1007/BF02390501

Subjects:
Primary: 43A25
Secondary: 43A15 , 43A70

Rights: 1982 © Institut Mittag Leffler

Vol.20 • No. 1-2 • 1982
Back to Top