Taiwanese Journal of Mathematics

THE BANACH ALGEBRA ${\cal F}(S,T)$ AND ITS AMENABILITY OF COMMUTATIVE FOUNDATION $*$-SEMIGROUPS $S$ AND $T$

M. Lashkarizadeh Bami

Full-text: Open access

Abstract

In the present paper we shall first introduce the notion of the algebra ${\cal F}(S,T)$ of two topological $*$-semigroups $S$ and $T$ in terms of bounded and weakly continuous $*$-representations of $S$ and $T$ on Hilbert spaces. In the case where both $S$ and $T$ are commutative foundation $*$-semigroups with identities it is shown that ${\cal F}(S,T)$ is identical to the algebra of the Fourier transforms of bimeasures in $BM(S^*,T^*)$, where $S^*$ ($T^*$, respectively) denotes the locally compact Hausdorff space of all bounded and continuous $*$-semicharacters on $S$ ($T$, respectively) endowed with the compact open topology. This result has enabled us to make the bimeasure Banach space $BM(S^*,T^*)$ into a Banach algebra. It is also shown that the Banach algebra ${\cal F}(S,T)$ is amenable and $K\big(\sigma (\overline{{\cal F}(S,T)})\big)$ is a compact topological group, where $\sigma (\overline {{\cal F}(S,T)})$ denotes the spectrum of the commutative Banach algebra $\overline{{\cal F}(S,T)}$ as a closed subalgebra of wap $(S \times T)$, the Banach algebra of weakly almost periodic continuous functions on $S \times T$.

Article information

Source
Taiwanese J. Math., Volume 16, Number 2 (2012), 787-802.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500406616

Digital Object Identifier
doi:10.11650/twjm/1500406616

Mathematical Reviews number (MathSciNet)
MR2892913

Zentralblatt MATH identifier
1244.43003

Subjects
Primary: 43A65: Representations of groups, semigroups, etc. [See also 22A10, 22A20, 22Dxx, 22E45] 22A25: Representations of general topological groups and semigroups 43A35: Positive definite functions on groups, semigroups, etc. 43A10: Measure algebras on groups, semigroups, etc.

Keywords
topological semigroup representation bimeasure Banach algebra Fourier-Stieltjes algebra

Citation

Bami, M. Lashkarizadeh. THE BANACH ALGEBRA ${\cal F}(S,T)$ AND ITS AMENABILITY OF COMMUTATIVE FOUNDATION $*$-SEMIGROUPS $S$ AND $T$. Taiwanese J. Math. 16 (2012), no. 2, 787--802. doi:10.11650/twjm/1500406616. https://projecteuclid.org/euclid.twjm/1500406616


Export citation

References

  • A. C. Baker and J. W. Baker, Algebras of measures on a locally compact semigroup III, J. Lond. Math. Soc., 4 (1972), 685-695.
  • J. W. Baker and M. Lashkarizadeh Bami, Representations and positive definite functions on topological semigroups, Glasgow Math. J., 38 (1996), 99-111.
  • J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on Semigroups: Function Spaces, Compactifications, Representations, Wiley-Interscience Publications, New York, 1989.
  • J. Diximier, $C^*$-Algebras, North-Holland, Amsterdam, 1977.
  • N. Dunford and J. T. Schwartz, Linear Operators I, Wiley, New York, 1958.
  • H. A. M. Dzinotyiweyi, The analogue of the group algebra for topological semigroups, Pitman, Boston, Mass. London, 1984.
  • C. C. Graham and B. M. Schreiber, Bimeasure algebras on $LCA$ groups, Pacific J. Math., 115 (1984), 91-127.
  • M. Lashkarizadeh Bami, Representations of foundation semigroups and their algebras, Canadian J. Math., 37 (1985), 29-47.
  • M. Lashkarizadeh Bami, Bochner's theorem and the Hausdorff moment theorem on foundation topological semigroups, Canadian J. Math., 37 (1986), 785-809.
  • A. T. Lau, The Fourier Stieltjes algebra of a topological semigroup with involution, Pacific J. Math., 77(1) (1978), 165-181.
  • S. Sakai, $C^*$-Algebras and $W^*$-Algebras, Springer Verlag, Berlin-Heidelberg-New York, 1971.
  • G. L. G. Sleijpen, Convolution measure algebras on semigroups, Ph.D. Thesis, Katholieke Universiteit, The Netherlands, 1976.
  • B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, Elsevier, North-Holland-Amsterdam-London, 1970.