Topological Methods in Nonlinear Analysis

Impulsive hyperbolic differential inclusions with variable times

Mouffak Benchohra, Lech Górniewicz, Sotiris K. Ntouyas, and Abdelghani Ouahab

Full-text: Open access

Abstract

In this paper the nonlinear alternative of Leray-Schauder type is used to investigate the existence of solutions for second order impulsive hyperbolic differential inclusions with variable times.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 22, Number 2 (2003), 319-329.

Dates
First available in Project Euclid: 30 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1475266339

Mathematical Reviews number (MathSciNet)
MR2036379

Zentralblatt MATH identifier
1050.35159

Citation

Benchohra, Mouffak; Górniewicz, Lech; Ntouyas, Sotiris K.; Ouahab, Abdelghani. Impulsive hyperbolic differential inclusions with variable times. Topol. Methods Nonlinear Anal. 22 (2003), no. 2, 319--329. https://projecteuclid.org/euclid.tmna/1475266339


Export citation

References

  • J. P. Aubin and A. Cellina, Differential Inclusions, Springer–Verlag, Berlin (1984) \ref\key 2
  • D. D. Bainov, Z. Kamont and E. Minchev, Comparison principles for impulsive hyperbolic equations of first order , J. Comput. Appl. Math., 60 (1995), 379–388 \ref\key 3
  • M. Benchohra, A note on an hyperbolic differential inclusions in Banach spaces , Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 101–107 \ref\key 4
  • K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin–New York (1992) \ref\key 6
  • J. Dugundji and A. Granas, Fixed Point Theory , Mongrafie Mat., PWN, Warsaw(1982) \ref\key 7
  • L. Erbe, H. I. Freedman, X. Z. Liu and J. H. Wu, Comparison principles for impulsive parabolic equations with applications to models of singles species growth , J. Austral. Math. Soc. Ser. B, 32 (1991), 382–400 \ref\key 8
  • J. Hale, Ordinary Differential Equations , Pure Appl. Math., John Wiley and Sons, New York–London–Sydney (1969) \ref\key 10
  • Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht–Boston–London (1997) \ref\key 11
  • M. Kirane and Y. V. Rogovchenko, Comparison results for systems of impulsive parabolic equations with applications to population dynamics , Nonlinear Anal., 28 (1997), 263–276 \ref\key 12
  • V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989) \ref\key 13
  • A. Lasota and Z. Opial, An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations , Bull. Polish Acad. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781–786 \ref\key 14
  • J. H. Liu, Nonlinear impulsive evolution equations , Dynam. Contin. Discrete Impuls. Systems, 6 (1999), 77–85 \ref\key 15
  • X. Liu and S. Zhang, A cell population model described by impulsive PDEs-existence and numerical approximation , Comput. Math. Appl., 36\rom(8) (1998), 1–11 \ref\key 16
  • A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995)