Topological Methods in Nonlinear Analysis

A fixed point index for equivariant maps

Davide L. Ferrario

Full-text: Open access

Abstract

The purpose of the paper is to define a fixed point index for equivariant maps of $G$-ENR's and to state and prove some of its properties, such as the compactly fixed $G$-homotopy property, the Lefschetz property, its converse, and the retraction property. At the end, some examples are given of equivariant self-maps which have a nonzero index (hence cannot be deformed equivariantly to be fixed point free) but have a zero $G$-Nielsen invariant.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 13, Number 2 (1999), 313-340.

Dates
First available in Project Euclid: 29 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1475178885

Mathematical Reviews number (MathSciNet)
MR1742227

Zentralblatt MATH identifier
0959.55004

Citation

Ferrario, Davide L. A fixed point index for equivariant maps. Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 313--340. https://projecteuclid.org/euclid.tmna/1475178885


Export citation

References

  • Z. I. Balanov and A. Kushkuley, Geometric methods in degree theory for equivariant maps , Lecture Notes in Mathematics, 1632 , Springer-Verlag, Berlin (1996) \ref\key 2
  • R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Ill.-London (1971) \ref\key 3 ––––, Topological fixed point theory , History of Topology (I. James, ed.), Elsevier \ref\key 4
  • M. Citterio, The Reidemeister number as a homotopy equalizer , Rend. Mat. Appl. (7), 18 (1998), 87–101 \ref\key 5
  • A. Dold, Fixed point index and fixed point theorem for Euclidean neighbourhood retracts , Topology, 4 (1965), 1–8 \ref\key 6 ––––, Lectures on Algebraic Topology, Springer-Verlag, Berlin Heidelberg New York (1972) \ref\key 7 ––––, The fixed point index of fibre-preserving maps , Invent. Math., 25 (1974), 281–297 \ref\key 8
  • D. L. Ferrario, Generalized Lefschetz numbers of pushout maps , Topology Appl., 68 (1996), 67–81 \ref\key 9
  • E. Fadell and S. Husseini, Local fixed point index theory for non-simply connected manifolds , Illinois J. Math., 25 (1981), 673–699 \ref\key 10
  • E. Fadell and P. Wong, On deforming $G$-maps to be fixed point free , Pacific J. Math., 132 (1988), 277–281 \ref\key 11
  • J. S. Fares and E. L. Hart, A generalized Lefschetz number for local Nielsen fixed point theory , Topology Appl., 59 (1994), 1–23 \ref\key 12
  • R. Geoghegan, Nielsen fixed point theory , Handbook of Geometric Topology, Elsevier \ref\key 13
  • S. Y. Husseini, Generalized Lefschetz numbers , Trans. Amer. Math. Soc., 272 (1982), 247–274 \ref\key 14
  • S. Illman, The equivariant triangulation theorem for actions of compact Lie groups , Math. Ann., 262 (1983), 487–501 \ref\key 15
  • B. J. Jiang, On the least number of fixed points , Amer. J. Math., 102 (1980), 749–763 \ref\key 16 ––––, Lectures on Nielsen fixed point theory , Contemp. Math. 14 (1983) \ref\key 17
  • K. Komiya, The Lefschetz number for equivariant maps , Osaka J. Math., 24 no 2 (1987), 299–305 \ref\key 18 ––––, Fixed point indices for equivariant maps and Möbius inversion , Invent. Math., 91 (1988), 129–135 \ref\key 19
  • E. Laitinen and W. Lück, Equivariant Lefschetz classes , Osaka J. Math., 26 (1989), 491–525 \ref\key 20
  • R. Piccinini, Lectures on Homotopy Theory, North-Holland (1992) \ref\key 21
  • T. tom Dieck, Transformation groups, Walter de Gruyter, Berlin, New York (1987) \ref\key 22
  • T. tom Dieck, K. H. Kamps, D. Puppe, Homotopietheorie , Lecture Notes in Math., 157 , Springer-Verlag (1970) \ref\key 23
  • H. Ulrich, Fixed point theory of parameterized equivariant maps , Lecture Notes in Math., 1343 , Springer-Verlag (1988) \ref\key 24
  • A. Vidal, Proceedings of the Workshop “Dynamical Zeta functions, Nielsen theory and Reidemeister torsion”, Banach Center Publications, Warsaw (1996) \ref\key 25
  • D. Wilczyński, Fixed point free equivariant homotopy classes , Fund. Math., 123 (1984), 47–60 \ref\key 26
  • P. Wong, Equivariant Nielsen fixed point theory for G-maps , Pacific J. Math., 150 (1991), 179–200 \ref\key 27 ––––, Equivariant Nielsen numbers , Pacific J. of Math., 159 (1993), 153–175