Topological Methods in Nonlinear Analysis

A generalization of Nadler’s fixed point theorem and its application to nonconvex integral inclusions

Hemant Kumar Pathak and Naaser Shahzad

Full-text: Open access

Abstract

In this paper, a generalization of Nadler's fixed point theorem is presented. In the sequel, we consider a nonconvex integral inclusion and prove a Filippov type existence theorem by using an appropriate norm on the space of selection of the multifunction and a $H^+$-type contraction for set-valued maps.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 41, Number 1 (2013), 207-227.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461253862

Mathematical Reviews number (MathSciNet)
MR3086540

Citation

Pathak, Hemant Kumar; Shahzad, Naaser. A generalization of Nadler’s fixed point theorem and its application to nonconvex integral inclusions. Topol. Methods Nonlinear Anal. 41 (2013), no. 1, 207--227. https://projecteuclid.org/euclid.tmna/1461253862


Export citation

References

  • C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, LNM, 580 , Springer, Berlin (1977) \ref\key 3
  • A. Cernea, A Filippov type existence theorem for infinite horizon operational differential inclusions , Stud. Cerc. Mat., 50 (1998), 15–22 \ref\key 4 ––––, Existance for nonconvex integral inclusions via fixed points , Arch. Math. (Brno), 39 (2003), 293–298 \ref\key 5
  • Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings , J. Math. Anal. Appl., 317 (2006), 103–112 \ref\key 6
  • A.F. Filippov, Differential equations with second members discontinuous on intersecting surfaces , Differentsial'nye Uravneniya ; English transl., 15 (1979), 1814–1832 \ref\key 7
  • H. Kaneko, Generalized contractive multi-valued mappings and their fixed points , Math. Japon., 133 (1988), 57–64 \ref\key 8
  • D. Klim and D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces , J. Math. Anal. Appl., 334 (2007), 132–139 \ref\key 9
  • K. Kuratowski, Topology, , Academic Press, New York and London (1966) \ref\key 10
  • T.C. Lim, On fixed point stability for set-valued mappings with applications to generalized differential equationsand their fixed points , J. Math. Anal. Appl., 110 (1985), 136–141 \ref\key 11
  • E. Lami Dozo, Multivalued nonexpansive mappings and Opial's condition , Proc. Amer. Math. Soc., 38 (1973), 286–292 \ref\key 12
  • N. Mizoguchi and W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric spaces , J. Math. Anal. Appl., 141 (1989), 177–188 \ref\key 13
  • S. Nadler Jr., Multi-valued contraction mappings , Pacific J. Math., 20(1969), 475–488 \ref\key 14
  • H.K. Pathak and N. Shahzad, Fixed point results for set-valued contractions by altering distances in complete metric spaces , Nonlinear Anal., 70 (2009), 2634–2641 \ref\key 15
  • A. Petrusel, Operatorial inclusions, House of the Book of Science, Cluj-Napoca (2002) \ref\key 16
  • S. Reich, Fixed points of contractive functions , Boll. Unione Mat. Ital., 5 (1972), 26–42 \ref\key 17
  • S. Reich, Some fixed point problems , Atti Acad. Naz. Lincei, 57 (1974), 194–198 \ref\key 18
  • T. Suzuki, Mizoguchi–Takahashi's fixed point theorem is a real generalization of Nadler's , J. Math. Anal. Appl., 340 (2008), 752–755