Tohoku Mathematical Journal

Conformally flat submanifolds in spheres and integrable systems

Neil Donaldson and Chuu-Lian Terng

Full-text: Open access

Abstract

É. Cartan proved that conformally flat hypersurfaces in $S^{n+1}$ for $n>3$ have at most two distinct principal curvatures and locally envelop a one-parameter family of $(n-1)$-spheres. We prove that the Gauss-Codazzi equation for conformally flat hypersurfaces in $S^4$ is a soliton equation, and use a dressing action from soliton theory to construct geometric Ribaucour transforms of these hypersurfaces. We describe the moduli of these hypersurfaces in $S^4$ and their loop group symmetries. We also generalise these results to conformally flat $n$-immersions in $(2n-2)$-spheres with flat and non-degenerate normal bundle.

Article information

Source
Tohoku Math. J. (2), Volume 63, Number 2 (2011), 277-302.

Dates
First available in Project Euclid: 6 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1309952090

Digital Object Identifier
doi:10.2748/tmj/1309952090

Mathematical Reviews number (MathSciNet)
MR2812455

Zentralblatt MATH identifier
1246.53079

Subjects
Primary: 53A30: Conformal differential geometry
Secondary: 37K25: Relations with differential geometry 37K35: Lie-Bäcklund and other transformations 53B25: Local submanifolds [See also 53C40]

Citation

Donaldson, Neil; Terng, Chuu-Lian. Conformally flat submanifolds in spheres and integrable systems. Tohoku Math. J. (2) 63 (2011), no. 2, 277--302. doi:10.2748/tmj/1309952090. https://projecteuclid.org/euclid.tmj/1309952090


Export citation

References

  • M. Brück, X. Du, J.Park and C.-L. Terng, The submanifold geometries associated to Grassmannian systems, Mem. Amer. Math. Soc. 735 (2002), viii+95.
  • F. E. Burstall, Isothermic surfaces, conformal geometry, Clifford algebras and integrable systems, in Integrable systems, geometry, and topology 1–82, AMS/IP Stud. Adv. Math. 36, Amer. Math. Soc. Providence, RI, (2006).
  • F. E. Burstall and D. M. J. Calderbank, Conformal submanifold geometry, in preparation.
  • É. Cartan, La déformation des hypersurfaces dans l'espace conforme réel à $n \ge 5$ dimensions, Bull. Soc. Math. France 45 (1917), 57–121.
  • D. Ferus and F. Pedit, Curved flats in symmetric spaces, Manuscripta Math. 91 (1996), 445–454.
  • U. Hertrich-Jeromin, On conformally flat hypersurfaces in four dimensional space forms, Ph. D. Thesis (Zbl861.53059), 1994.
  • U. Hertrich-Jeromin, On conformally flat hypersurfaces and Guichard's nets, Beiträge Algebra Geom. 35 (1994), 315–331.
  • U. Hertrich-Jeromin, On conformally flat hypersurfaces, curved flats and cyclic systems, Manuscripta Math. 91 (1996), 455–466.
  • U. Hertrich-Jeromin, Introduction to Möbius differential geometry, London Math. Soc. Lecture Note Ser. 300, Cambridge University Press, Cambridge, 2003.
  • C.-L. Terng, Submanifolds with flat normal bundle, Math. Ann. 277 (1987), 95–111.
  • C.-L Terng, Soliton equations and differential geometry, J. Differential Geom. 45 (1997), 407–445.
  • C.-L. Terng and K. Uhlenbeck, Bäcklund transformations and loop group actions, Comm. Pure Appl. Math. 53 (2000), 1–75.
  • C.-L. Terng and E. Wang, Curved flats, exterior differential systems, and conservation laws, Complex, contact and symmetric manifolds, 235–254, Progr. Math. 234, Birkhäuser Boston, Boston, MA, 2005.