Tohoku Mathematical Journal

Calibrations and Lagrangian submanifolds in the six sphere

Bennett Palmer

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 50, Number 2 (1998), 303-315.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178224980

Digital Object Identifier
doi:10.2748/tmj/1178224980

Mathematical Reviews number (MathSciNet)
MR1622082

Zentralblatt MATH identifier
0952.53036

Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53C40: Global submanifolds [See also 53B25]

Citation

Palmer, Bennett. Calibrations and Lagrangian submanifolds in the six sphere. Tohoku Math. J. (2) 50 (1998), no. 2, 303--315. doi:10.2748/tmj/1178224980. https://projecteuclid.org/euclid.tmj/1178224980


Export citation

References

  • [1] E CALABI, Construction and properties of some 6-dimensional almost complex manifolds, Trans Amer Math Soc 87 (1958), 407-438
  • [2] B Y CHEN AND J M MORVAN, Deformation of isotropic submanifolds in Kaehler manifolds, Geom Phys 13 (1994), 79-104
  • [3] F DILLEN AND L. VRANKEN, Totally real submanifolds satisfying Chen's inequality, Trans Ame Math Soc 348 (1996), 1633-1646
  • [4] N EJIRI, Totally real submanifolds in a 6-sphere, Proc Amer Math Soc 83, no 4 (1981), 759-76
  • [5] V GINZBURG AND B. KESiN, Steady fluid flows and symplectic geometry, J Geom Phys 14(1994), 195-210
  • [6] R HARVEY AND B. LAWSON, Calibrated Geometries, Acta Math 148(1982), 47-15
  • [7] B LAWSON, Minimal Varieties in Real and Complex Geometry, Seminaire de Mathematique Superieure Universite Montreal, (1974)
  • [8] LE HONG VAN, Relative calibrations and the problem of stability of minimal surfaces, Globa analysis-studies and applications IV, Lecture Notes in Math 1453 (1990), 2245-2263
  • [9] Y G OH, Second variation and stability of minimal Lagrangian submanifolds, Invent Math 10 (1990), 501-519
  • [10] Y G OH, Volume minimizationof Lagrangian submanifolds under Hamiltonian deformations, Mat Z 192 (1993), 175-193
  • [11] B PALMER, Buckling eigenvalues, Gauss maps and Lagrangian submanifolds, Differential Geometr and its Applications 4 (1994), 391-403
  • [12] B PALMER, Hamiltonian minimality and Hamiltonian stability of Gauss maps, Differential Geometr and its Applications 7 (1997), 51-58
  • [13] J SIMONS, Minimal varieties in a Riemannian manifold, Ann of Math 88 (1968), 62-10
  • [14] F URBANO, Index of Lagrangian submanifolds of CP" and the Laplacian of 1 -forms, Geom Ded 4 (1993), 309-318
  • [15] P C YANG AND S. T YAU, Eigenvalues of the Laplacian of Riemann surfaces and minima submanifolds, Ann Sci EC Norm Super Pisa 7 (1980), 55-63