Tohoku Mathematical Journal

Monodromies of hyperelliptic families of genus three curves

Mizuho Ishizaka

Full-text: Open access

Abstract

A complete list of the monodromies of degenerations of genus three which are not realized as the monodromies of any hyperelliptic families of genus three is given. We also prove that all the other monodromies of genus three are realized as the monodromies of certain hyperelliptic families.

Article information

Source
Tohoku Math. J. (2), Volume 56, Number 1 (2004), 1-26.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113246379

Digital Object Identifier
doi:10.2748/tmj/1113246379

Mathematical Reviews number (MathSciNet)
MR2028916

Zentralblatt MATH identifier
1073.14019

Subjects
Primary: 14D06: Fibrations, degenerations
Secondary: 14H10: Families, moduli (algebraic)

Citation

Ishizaka, Mizuho. Monodromies of hyperelliptic families of genus three curves. Tohoku Math. J. (2) 56 (2004), no. 1, 1--26. doi:10.2748/tmj/1113246379. https://projecteuclid.org/euclid.tmj/1113246379


Export citation

References

  • M. Asada, M. Matsumoto and Takayuki Oda, Local monodromy on the fundamental groups of algebraic curves along a degenerate stable curves, J. Pure Appl. Algebra 103 (1995), 235--283.
  • T. Ashikaga and M. Ishizaka, Classification of degenerations of curves of genus three via Matsumoto-Montesinos' theorem, Tohoku Math. J. 54 (2002), 195--226.
  • P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75--109.
  • C. J. Earle and P. L. Sipe, Families of Riemann surfaces over the punctured disk, Pacific J. Math. 150 (1991), 79--86.
  • C. Faber, Chow rings of moduli spaces of curves I: The Chow ring of $\overlineM_3$, Ann. of Math. 132 (1990), 331--419.
  • J. Harvey, Cyclic groups of automorphisms of compact Riemann surfaces, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86--97.
  • J. Harris and I. Morrison, Moduli of curves, Springer-verlag, New York, 1998.
  • E. Horikawa, On deformations of quintic surfaces, Invent. Math. 31 (1975), 43--85.
  • E. Horikawa, On algebraic surfaces with pencils of curves of genus 2, in Complex Analysis and Algebraic Geometry, a collection of papers dedicated to K. Kodaira, 79--90, Iwanami Shoten, Tokyo and Cambridge Univ. Press, 1977.
  • Y. Imayoshi, Holomorphic families of Riemann surfaces and Teich\"m"uller spaces, in Riemann Surfaces and Related Topics, Ann. of Math. Stud. 97 (1981), 277--300.
  • S. P. Kerchhoff, The Nielsen realization problem, Ann. of Math. 117 (1983), 235--265.
  • Y. Matsumoto and J. M. Montesinos-Amilibia, Pseudo-periodic maps and degeneration of Riemann surfaces I, II, preprints, Univ. of Tokyo and Univ. Complutense de Madrid, 1991/1992.
  • Y. Matsumoto and J. M. Montesinos-Amilibia, Pseudo-periodic homeomorphisms and degeneration of Riemann surfaces, Bull. Amer. Math. Soc. 30 (1994), 70--75.
  • J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Mat.-Fys. Medd. Danske Vid. Selsk. 15 (1937), English translation: in Collected Papers 2, Birkhäuser, 1986.
  • J. Nielsen, Surface transformation classes of algebraically finite type, Mat.-Fys. Medd. Danske Vid. Selsk. 21 (1944), 3--89.
  • H. Shiga and H. Tanigawa, On the Maskit coordinates of Teichmüller spaces and modular transformation, Kodai Math. J. 12 (1989), 437--443.
  • A. Wiman, Über die hyperelliptischen Kurven und diejenigen vom Geschlechte=3, welche eindeutige Transformationen in sich zulassen, Bihang. Kengle. Svenska Vetenkaps-Akademiens Hendlingar, Stockholm, 1895--6.