Tokyo Journal of Mathematics

Deficient and Ramified Small Functions for Admissible Solutions of Some Differential Equations II

Kenji FUJITA and Katsuya ISHIZAKI

Full-text: Open access

Abstract

Let $\alpha_{j}(z)$, $j=1,2$, $a_{i}(z)$, $i=1,2,\ldots,6$ be meromorphic functions. Suppose the differential equation (*) $w'^3+\alpha_2(z)w'^2+\alpha_1(z)w'=a_6(z)w^6+\cdots+a_1(z)w+a_0(z)$ possesses an admissible solution $w(z)$. If $\eta(z)$ is a solution of (*) and small with respect to $w(z)$ and if (*) is irreducible, then $\eta(z)$ is a deficient or a ramified function for $w(z)$.

Article information

Source
Tokyo J. Math., Volume 14, Number 2 (1991), 269-276.

Dates
First available in Project Euclid: 1 April 2010

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1270130371

Digital Object Identifier
doi:10.3836/tjm/1270130371

Mathematical Reviews number (MathSciNet)
MR1138166

Zentralblatt MATH identifier
0749.34006

Citation

ISHIZAKI, Katsuya; FUJITA, Kenji. Deficient and Ramified Small Functions for Admissible Solutions of Some Differential Equations II. Tokyo J. Math. 14 (1991), no. 2, 269--276. doi:10.3836/tjm/1270130371. https://projecteuclid.org/euclid.tjm/1270130371


Export citation