Statistical Science

Nonparametric Methods in Reliability

Myles Hollander and Edsel A. Peña

Full-text: Open access

Abstract

Probabilistic and statistical models for the occurrence of a recurrent event over time are described. These models have applicability in the reliability, engineering, biomedical and other areas where a series of events occurs for an experimental unit as time progresses. Nonparametric inference methods, in particular, the estimation of a relevant distribution function, are described.

Article information

Source
Statist. Sci., Volume 19, Number 4 (2004), 644-651.

Dates
First available in Project Euclid: 18 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.ss/1113832729

Digital Object Identifier
doi:10.1214/088342304000000521

Mathematical Reviews number (MathSciNet)
MR2185586

Zentralblatt MATH identifier
1100.62605

Keywords
Aalen–Nelson estimator counting process frailty Gaussian process martingale minimal repair perfect repair product-limit estimator

Citation

Hollander, Myles; Peña, Edsel A. Nonparametric Methods in Reliability. Statist. Sci. 19 (2004), no. 4, 644--651. doi:10.1214/088342304000000521. https://projecteuclid.org/euclid.ss/1113832729


Export citation

References

  • Aalen, O. (1978). Nonparametric inference for a family of counting processes. Ann. Statist. 6 701--726.
  • Aalen, O. and Husebye, E. (1991). Statistical analysis of repeated events forming renewal processes. Statistics in Medicine 10 1227--1240.
  • Andersen, P., Borgan, Ø., Gill, R. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer, New York.
  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1--38.
  • Dorado, C. (1995). On a general repair model for repairable systems. Ph.D. dissertation, Florida State Univ.
  • Dorado, C., Hollander, M. and Sethuraman, J. (1997). Nonparametric estimation for a general repair model. Ann. Statist. 25 1140--1160.
  • Fleming, T. and Harrington, D. (1991). Counting Processes and Survival Analysis. Wiley, New York.
  • Gill, R. (1980). Nonparametric estimation based on censored observations of a Markov renewal process. Z. Wahrsch. Verw. Gebiete 53 97--116.
  • Gill, R. (1981). Testing with replacement and the product-limit estimator. Ann. Statist. 9 853--860.
  • Gill, R. and Johansen, S. (1990). A survey of product-integration with a view toward application in survival analysis. Ann. Statist. 18 1501--1555.
  • Hall, W. and Wellner, J. (1980). Confidence bands for a survival curve from censored data. Biometrika 67 133--143.
  • Koziol, J. and Byar, D. (1975). Percentage points of the asymptotic distributions of one and two sample K--S statistics for truncated or censored data. Technometrics 17 507--510.
  • Nielsen, G., Gill, R., Andersen, P. and Sørensen, T. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Statist. 19 25--43.
  • Peña, E. A., Strawderman, R. L. and Hollander, M. (2001). Nonparametric estimation with recurrent event data. J. Amer. Statist. Assoc. 96 1299--1315.
  • Resnick, S. (1992). Adventures in Stochastic Processes. Birkhäuser, Boston.
  • Sellke, T. (1988). Weak convergence of the Aalen estimator for a censored renewal process. In Statistical Decision Theory and Related Topics IV (S. Gupta and J. Berger, eds.) 2 183--194. Springer, New York.
  • Wang, M.-C. and Chang, S.-H. (1999). Nonparametric estimation of a recurrent survival function. J. Amer. Statist. Assoc. 94 146--153.