Revista Matemática Iberoamericana

Reflections of regular maps and Riemann surfaces

Adnan Melekoğlu and David Singerman

Full-text: Open access

Abstract

A compact Riemann surface of genus $g$ is called an M-surface if it admits an anti-conformal involution that fixes $g+1$ simple closed curves, the maximum number by Harnack's Theorem. Underlying every map on an orientable surface there is a Riemann surface and so the conclusions of Harnack's theorem still apply. Here we show that for each genus $g ϯ 1$ there is a unique M-surface of genus $g$ that underlies a regular map, and we prove a similar result for Riemann surfaces admitting anti-conformal involutions that fix $g$ curves.

Article information

Source
Rev. Mat. Iberoamericana, Volume 24, Number 3 (2008), 921-939.

Dates
First available in Project Euclid: 9 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1228834298

Mathematical Reviews number (MathSciNet)
MR2490203

Zentralblatt MATH identifier
1198.30041

Subjects
Primary: 05C10: Planar graphs; geometric and topological aspects of graph theory [See also 57M15, 57M25] 30F10: Compact Riemann surfaces and uniformization [See also 14H15, 32G15]

Keywords
regular map Riemann surface Platonic surface M-surface (M$-$1)-surface

Citation

Melekoğlu, Adnan; Singerman, David. Reflections of regular maps and Riemann surfaces. Rev. Mat. Iberoamericana 24 (2008), no. 3, 921--939. https://projecteuclid.org/euclid.rmi/1228834298


Export citation

References

  • Accola, R. D. M.: On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131 (1968), 398-408.
  • Broughton, S. A., Bujalance, E., Costa, A. F., Gamboa, J. M. and Gromadzki, G.: Symmetries of Accola-Maclachlan and Kulkarni surfaces. Proc. Amer. Math. Soc. 127 (1999), no. 3, 637-646.
  • Bujalance, E., Etayo, J. J., Gamboa, J. M. and Gromadzki, G.: Automorphism groups of compact bordered Klein surfaces. A combinatorial approach. Lecture Notes in Mathematics 1439. Springer-Verlag, Berlin, 1990.
  • Bujalance, E. and Singerman, D.: The symmetry type of a Riemann surface. Proc. London Math. Soc. (3) 51 (1985), 501-519.
  • Bujalance, E. and Costa, A. F.: A combinatorial approach to the symmetries of $M$ and $M-1$ Riemann surfaces. In Discrete Groups and Geometry (Birmingham, 1991), 16-25. London Math. Soc. Lecture Note Ser. 173. Cambridge Univ. Press, Cambridge, 1992.
  • Bujalance, E., Costa, A. F. and Singerman, D.: Application of Hoare's theorem to symmetries of Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 307-322.
  • Cirre, F. J. and Gamboa, J. M.: Compact Klein surfaces and real algebraic curves. In Topics on Riemann surfaces and Fuchsian groups (Madrid, 1998), 113-131. London Math. Soc. Lecture Note Ser. 287. Cambridge Univ. Press, Cambridge, 2001.
  • Coxeter, H. S. M. and Moser, W. O. J.: Generators and relations for discrete groups. Fourth edition. Results in Mathematics and Related Areas 14. Springer-Verlag, Berlin-New York, 1980.
  • Harnack, A.: Über die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann. 10 (1876), 189-198.
  • Harvey, W. J.: Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford. Ser. (2) 17 (1966), 86-97.
  • Hoare, A. H. M. and Singerman, D.: The orientability of subgroups of plane groups. In Groups-St. Andrews 1981 (St. Andrews 1981), 221-227. London Math. Soc. Lecture Note Ser. 71. Cambridge Univ. Press, Cambridge, 1982.
  • Jones, G. A. and Singerman, D.: Theory of maps on orientable surfaces. Proc. London Math. Soc. (3) 37 (1978), 273-307.
  • Klein, F.: On Riemann's theory of algebraic functions and their integrals. A supplement to the usual treatises. Dover Publications, New York, 1963.
  • Kulkarni, R. S.: A note on Wiman and Accola-Maclachlan surfaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), 83-94.
  • Kulkarni, R. S.: Riemann surfaces admitting large automorphism groups. In Extremal Riemann surfaces (San Francisco, CA, 1995), 63-79. Contemp. Math. 201. Amer. Math. Soc., Providence, RI, 1997.
  • Macbeath, A. M.: On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5 (1961), 90-96.
  • Macbeath, A. M.: The classification of non-euclidean plane crystallographic groups. Canad. J. Math. 19 (1967), 1192-1205.
  • Maclachlan, C.: A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. 44 (1969), 265-272.
  • Natanzon, S. M.: Automorphisms of the Riemann surface of an $M$-curve. Funct. Anal. Appl. 12 (1978) 228-229.
  • Natanzon, S. M.: Automorphisms and real forms of a class of complex algebraic curves. Funct. Anal. Appl. 13 (1979), 148-150.
  • Natanzon, S. M.: Lobachevskien geometry and automorphisms of complex $M$-curves. Selecta Math. Sovietica. 1 (1981), 81-99.
  • Singerman, D.: Finitely maximal Fuchsian groups. J. London Math. Soc. (2) 6 (1972), 29-38.
  • Singerman, D.: Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210 (1974), 17-32.
  • Singerman, D.: On the structure of non-Euclidean crystallographic groups. Proc. Cambridge Philos. Soc. 76 (1974), 233-240.
  • Singerman, D.: Hyperelliptic maps and surfaces. Math. Slovaca 47 (1997), 93-97.
  • Wiman, A.: Über die hyperelliptischen curven und diejenigen vom geschlechte $p=3$ welche eindeutigen transformationen in sich zulassen. Bihang Till Kongl. Svenska Veienskaps-Akademiens Handlingar, (Stockholm 1895-6), bd.21, 1-23.