Revista Matemática Iberoamericana

Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials

Céline Baranger and Clément Mouhot

Full-text: Open access

Abstract

This paper deals with explicit spectral gap estimates for the linearized Boltzmann operator with hard potentials (and hard spheres). We prove that it can be reduced to the Maxwellian case, for which explicit estimates are already known. Such a method is constructive, does not rely on Weyl's Theorem and thus does not require Grad's splitting. The more physical idea of the proof is to use geometrical properties of the whole collision operator. In a second part, we use the fact that the Landau operator can be expressed as the limit of the Boltzmann operator as collisions become grazing in order to deduce explicit spectral gap estimates for the linearized Landau operator with hard potentials.

Article information

Source
Rev. Mat. Iberoamericana, Volume 21, Number 3 (2005), 819-841.

Dates
First available in Project Euclid: 11 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1136999132

Mathematical Reviews number (MathSciNet)
MR2231011

Zentralblatt MATH identifier
1092.76057

Subjects
Primary: 76P05: Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05]
Secondary: 82B40: Kinetic theory of gases 82C40: Kinetic theory of gases 82D05: Gases

Keywords
spectral gap linearized Boltzmann operator Landau linearized operator geometrical properties explicit grazing collision limit hard potentials

Citation

Baranger, Céline; Mouhot, Clément. Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoamericana 21 (2005), no. 3, 819--841. https://projecteuclid.org/euclid.rmi/1136999132


Export citation

References

  • Bobylëv, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, In Mathematical physics reviews, Vol. 7, 111-233. Soviet Sci. Rev. Sect. C Math. Phys. Rev. 7, Harwood Academic Publ., Chur, 1988.
  • Caflisch, R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Comm. Math. Phys. 74 (1980), no. 2, 97-109.
  • Carrilo, J., McCann, R. and Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19 (2003), no. 3, 971-1018.
  • Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences 67. Springer-Verlag, New York, 1988.
  • Cercignani, C., Illner, R. and Pulvirenti, M.: The Mathematical theory of dilute gases. Applied Mathematical Sciences 106. Springer-Verlag, New York, 1994.
  • Czechowski, Z. and Palczewski, A.: Spectrum of the Boltzmann collision operator for radial cut-off potentials. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 28 (1980), no. 9-10, 387-396.
  • Degond, P. and Lemou, M.: Dispersion relations for the linearized Fokker-Planck equation. Arch. Rational Mech. Anal. 138 (1997), no. 2, 137-167.
  • Desvillettes, L.: Entropy dissipation rate and convergence in kinetic equations. Comm. Math. Phys. 123 (1989), no. 4, 687-702.
  • Desvillettes, L.: On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Statist. Phys. 21 (1992), no. 3, 259-276.
  • Desvillettes, L.: Convergence towards the thermodynamical equilibrium. In Trends in applications of mathematics to mechanics (Nice, 1998), 115-126. Monogr. Surv. Pure Appl. Math. 106. Chapman & Hall/CRC, Boca Raton, FL, 2000.
  • Desvillettes, L. and Villani, C: On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications. Comm. Partial Differential Equations 25 (2000), no. 1-2, 261-298.
  • Ellis, R.S. and Pinsky, M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl. (9) 54 (1975), 125-156.
  • Golse, F. and Poupaud, F.: Un résultat de compacité pour l'équation de Boltzmann avec potentiel mou. Application au problème de demi-espace. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 12, 583-586.
  • Klaus, M.: Boltzmann collision operator without cut-off. Helv. Phys. Acta 50 (1977), no. 6, 893-903.
  • Pao, Y.P.: Boltzmann collision operator with inverse-power intermolecular potentials. I, II. Comm. Pure Appl. Math. 27 (1974), 407-428, 559-581.
  • Villani, C.: A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, 71-305. North-Holland, Amsterdam, 2002.
  • Villani, C.: On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Models Methods Appl. Sci. 8 (1998), no. 6, 957-983.
  • Villani, C.:, Contribution à l'étude mathématique des collisions en théorie cinétique. Master's thesis, Univ. Paris-Dauphine France, 2000.
  • Wang Chang, C.S., Uhlenbeck, G.E. and De Boer, J.: Studies in Statistical Mechanics, Vol. V. North-Holland, Amsterdam, 1970.
  • Wennberg, B.: On an entropy dissipation inequality for the Boltzmann equation. C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 13, 1441-1446.