Real Analysis Exchange

A characterization of essentially ejective sets.

Tamás Mátrai and Imre Z. Ruzsa

Full-text: Open access

Abstract

We give three equivalent properties characterizing the essentially ejective sets of a compact commutative topological group.

Article information

Source
Real Anal. Exchange, Volume 29, Number 2 (2003), 587-600.

Dates
First available in Project Euclid: 7 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.rae/1149698550

Mathematical Reviews number (MathSciNet)
MR2083798

Zentralblatt MATH identifier
1084.28009

Subjects
Primary: 28A99: None of the above, but in this section 43A25: Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups

Keywords
ejective set weak Dirichlet set difference property

Citation

Mátrai, Tamás; Ruzsa, Imre Z. A characterization of essentially ejective sets. Real Anal. Exchange 29 (2003), no. 2, 587--600. https://projecteuclid.org/euclid.rae/1149698550


Export citation

References

  • N. G. de Bruijn, Functions whose differences belong to a given class, Nieuw Arch. Wisk., 23 (1951), 194–218.
  • M. Laczkovich, I. Z. Ruzsa, Measure of Sumsets and Ejective Sets I, Real Analysis Exchange, 22, No. 1 (1996-97), 153–167.
  • T. Keleti, Periodic $L_{p}$ functions with $L_{q}$ difference functions, Real Analysis Exchange, 23, No. 2 (1997-98), 431–440.
  • T. Mátrai, Difference functions of periodic $L_{p}$ functions, Real Analysis Exchange, 28, No. 2 (2002-03), 355–374.
  • B. Host, J-F. Méla, F. Parreau, Non Singular Transformations and Spectral Analysis of Measures, Bull. Soc. math. France, 119 (1991), 33–90.
  • S. Kahane, Antistable Classes of Thin Sets in Harmonic Analysis, Illinois J. of Math., 37 (1993), 186–223.