Publicacions Matemàtiques

Okutsu-Montes representations of prime ideals of one-dimensional integral closures

Enric Nart

Full-text: Open access

Abstract

This is a survey on Okutsu-Montes representations of prime ideals of certain one-dimensional integral closures. These representa- tions facilitate the computational resolution of several arithmetic tasks concerning prime ideals of global fields.

Article information

Source
Publ. Mat., Volume 55, Number 2 (2011), 261-294.

Dates
First available in Project Euclid: 22 June 2011

Permanent link to this document
https://projecteuclid.org/euclid.pm/1308748948

Mathematical Reviews number (MathSciNet)
MR2839443

Zentralblatt MATH identifier
1248.11107

Subjects
Primary: 11Y40: Algebraic number theory computations
Secondary: 11Y05: Factorization 11R04: Algebraic numbers; rings of algebraic integers

Keywords
Montes algorithm Newton polygon local field global field integral basis Okutsu-Montes representation

Citation

Nart, Enric. Okutsu-Montes representations of prime ideals of one-dimensional integral closures. Publ. Mat. 55 (2011), no. 2, 261--294. https://projecteuclid.org/euclid.pm/1308748948


Export citation

References

  • D. Ford and O. Veres, On the complexity of the Montes Ideal Factorization Algorithm, in: “Algorithmic Number Theory”, (Hanrot, G., Morain, F., and Thomé, E., eds.), 9th International Symposium, ANTS-IX, Nancy, France, July 19–23, 2010, Lecture Notes in Computer Science 6197, Springer, 2010, pp. 174\Ndash185.
  • J. Guàrdia, J. Montes, and E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, J. Théor. Nombres Bordeaux (to appear), arXiv:0807. 4065v3[math.NT].
  • J. Guàrdia, J. Montes, and E. Nart, Higher Newton polygons and integral bases, arXiv:0902.3428v2[math.NT].
  • J. Guàrdia, J. Montes, and E. Nart, Okutsu invariants and Newton polygons, Acta Arith. 145(1) (2010), 83\Ndash108.
  • J. Guàrdia, J. Montes, and E. Nart, A new computational approach to ideal theory in number fields, arXiv:1005. 1156v1[math.NT].
  • J. Guàrdia, J. Montes, and E. Nart, Arithmetic in big number fields: The `+Ideals' package, arXiv:1005. 4596v1[math.NT].
  • J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. (to appear), arXiv:0807.2620v2[math.NT].
  • J. Guàrdia, E. Nart, and S. Pauli, Single-factor lifting and factorization of polynomials over local fields, in preparation.
  • S. MacLane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc. 40(3) (1936), 363\Ndash395.
  • S. MacLane, A construction for prime ideals as absolute values of an algebraic field, Duke Math. J. 2(3) (1936), 492\Ndash510.
  • J. Montes, Polígonos de Newton de orden superior y aplicaciones aritméticas, Tesi Doctoral, Universitat de Barcelona (1999).
  • K. Okutsu, Construction of integral basis. I, Proc. Japan Acad. Ser. A Math. Sci. 58(1) (1982), 47\Ndash49; Construction of integral basis. II, Proc. Japan Acad. Ser. A Math. Sci. 58(2) (1982), 87\Ndash89.
  • Ø. Ore, Zur Theorie der algebraischen Körper, Acta Math. 44(1) (1923), 219\Ndash314.
  • Ø. Ore, Bestimmung der Diskriminanten algebraischer Körper, Acta Math. 45(1) (1925), 303\Ndash344.
  • S. Pauli, Factoring polynomials over local fields, II, in: “Algorithmic Number Theory”, (Hanrot, G., Morain, F., and Thomé, E., eds.), 9th International Symposium, ANTS-IX, Nancy, France, July 19–23, 2010, Lecture Notes in Computer Science 6197, Springer, 2010, pp. 301\Ndash315.
  • O. Veres, On the Complexity of Polynomial Factorization Over $P$-adic Fields, PhD Dissertation, Concordia University (2009).