Publicacions Matemàtiques

Besov capacity and Hausdorff measures in metric measure spaces

Ş. Costea

Full-text: Open access

Abstract

This paper studies Besov $p$-capacities as well as their relationship to Hausdorff measures in Ahlfors regular metric spaces of dimension $Q$ for $1<Q<p<\infty$. Lower estimates of the Besov $p$-capacities are obtained in terms of the Hausdorff content associated with gauge functions $h$ satisfying the decay condition $\int_0^1 h(t)^{1/(p-1)} \frac{dt}{t}<\infty$.

Article information

Source
Publ. Mat., Volume 53, Number 1 (2009), 141-178.

Dates
First available in Project Euclid: 17 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.pm/1229531048

Mathematical Reviews number (MathSciNet)
MR2474119

Zentralblatt MATH identifier
1171.46025

Subjects
Primary: 31C99: None of the above, but in this section 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Keywords
Besov capacity Hausdorff measures

Citation

Costea, Ş. Besov capacity and Hausdorff measures in metric measure spaces. Publ. Mat. 53 (2009), no. 1, 141--178. https://projecteuclid.org/euclid.pm/1229531048


Export citation