Pacific Journal of Mathematics

On two Tauberian remainder theorems.

Magnus Lindberg

Article information

Source
Pacific J. Math., Volume 12, Number 2 (1962), 607-615.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036497

Mathematical Reviews number (MathSciNet)
MR0151763

Zentralblatt MATH identifier
0115.09502

Subjects
Primary: 40.42

Citation

Lindberg, Magnus. On two Tauberian remainder theorems. Pacific J. Math. 12 (1962), no. 2, 607--615. https://projecteuclid.org/euclid.pjm/1103036497


Export citation

References

  • [1] V. Avakumovic, Bemerkunguber einen Satz des Herrn T. Carleman, Math. Z., 53 (1950), 53-58.
  • [2] V. Avakumovic, A note on a question set by P. Erdos and L. K. Hua,Publ. Inst. Math. Beograd, 6 (1954), 47-56.
  • [3] L. Bieberbach, Lehrbuch der Funktionenteorie II, NewYork1945.
  • [4] R. Bojanic, W. Jurkat, A. Peyerimhoff, ber einen Taubersatz fur Faltungen, Math. Z. 65 (1956), 195-199.
  • [5] F.Brownell, Research problem, Bull. Amer. Math. Soc,66 (I960), 275-276.
  • [6] P. Erdos, Supplementarynote, J. Indian Math. Soc,13 (1947), 145-147.
  • [7] G.Freud, Restglied eines Tauberschen Satzes I, Acta Math. Acad. Sci. Hungar, 2 (1951), 299.
  • [8] G.Freud, Restglied eines Tauberschen Satzes II, Acta Math. Acad. Sci.Hungar, 3 (1953),299.
  • [9] T. Ganelius, On the remainder in a Tauberian theorem, Kungl. Fysiogr. Sallsk. i Lund Forh., 24 (1954), no 20, 6-11.
  • [10] T. Ganelius, Un theoreme Tauberien pour la transformationde Laplace, C. R. Acad. Sci. Paris, 242 (1956), 719-721.
  • [11] J. Korevaar, A very general form of Littlewoods theorem, Indag, Math. 16 (1954), 36-45.
  • [12] D. Widder, The Laplace Transform,Princeton 1946.