Pacific Journal of Mathematics

Completion of mathematical systems.

A. H. Kruse

Article information

Source
Pacific J. Math., Volume 12, Number 2 (1962), 589-605.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103036496

Mathematical Reviews number (MathSciNet)
MR0143721

Zentralblatt MATH identifier
0121.01301

Subjects
Primary: 08.30

Citation

Kruse, A. H. Completion of mathematical systems. Pacific J. Math. 12 (1962), no. 2, 589--605. https://projecteuclid.org/euclid.pjm/1103036496


Export citation

References

  • [1] P. Bernays, A system of axiomatic set theory--Parts I-VII, Journal of Symbolic Logic, 2 (1937), 65-77; 6 (1941), 1-17; 7 (1942), 65-89 and 133-145; 8 (1943), 89-106; 13 (1948), 65-
  • [2] H. Cartan and S. Eilenberg, Homological Algebra. PrincetonUniversity Press, Princeton, N. J., 1956.
  • [3] K. Gcdel, The Consistency of the Axiom of Choice and of the Generalized Continuum- Hypothesis with the Axioms of Set Theory.Annals of Mathematics Studies, No. 3. Prince- ton University Press, Princeton, N. J., 1940.
  • [4] A. Mostowski, ber die Unabhdngigkeit des Wohlordnungssatzes vomOrdnungsprinzip, Fund. Math., 32 (1939), 201-252.
  • [5] D. Scott, Definitions by abstraction in axiomatic set theory, abstract 626, Bull. Amer. Math. Soc, 61 (1955), 442.
  • [6] W. R. Scott, Algebraically closed groups, Proc. Amer. Math. Soc, 2 (1951), 118-121.
  • [7] A. Tarski, The notion of rank in axiomatic set theory and some of its applications, abstract 628, Bull. Amer. Math. Soc, 61 (1955), 443.
  • [8] J. von Neumann, ber eine Widerspruchsfreiheitsfragein der axiomatischenMengen- lehre, Jour. r. angew. Math., 160 (1929), 227-241.
  • [9] J. C. Shepherdson, Inner models for set theory--Parts I, II, III, Journal of Symbol Logic, 16 (1951), 161-190; 17 (1952), 225-237; 18 (1953), 145-167.