Pacific Journal of Mathematics

A cone of super-$(L)$ functions.

F. W. Ashley, Jr.

Article information

Source
Pacific J. Math., Volume 13, Number 1 (1963), 1-6.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103035952

Mathematical Reviews number (MathSciNet)
MR0155035

Zentralblatt MATH identifier
0114.31301

Subjects
Primary: 34.30

Citation

Ashley, F. W. A cone of super-$(L)$ functions. Pacific J. Math. 13 (1963), no. 1, 1--6. https://projecteuclid.org/euclid.pjm/1103035952


Export citation

References

  • [1] E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc, 43 (1937), 363-371.
  • [2] F. F. Bonsall, The characterization of generalized convex functions, Quart. J. Math., (2) 1 (1950), 100-111.
  • [3] N. Bourbaki, Espaces Vectoriels Topologiques, Actualites Scientifiques et Industrielles 1189, Paris: Hermann et Cie., (1951).
  • [4] Gustave Choquet, Theory of capacities, Ann. Inst. Fourier, 5 (1953-54), 131-295.
  • [5] E. K. McLachlan, Extremal Elements of Certain Convex Conesof Functions, National Science Foundation Research Project on Geometry of Function Space, Report No. 3, University of Kansas, (1955).