Pacific Journal of Mathematics

An integral inequality with applications to the Dirichlet problem.

James Calvert

Article information

Source
Pacific J. Math., Volume 22, Number 1 (1967), 19-29.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102992292

Mathematical Reviews number (MathSciNet)
MR0216123

Zentralblatt MATH identifier
0166.06501

Subjects
Primary: 35.04

Citation

Calvert, James. An integral inequality with applications to the Dirichlet problem. Pacific J. Math. 22 (1967), no. 1, 19--29. https://projecteuclid.org/euclid.pjm/1102992292


Export citation

References

  • [1] P. R. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J. 25 (1958), 477-498.
  • [2] D. C. Benson, Inequalities involving integrals of functions and their derivatives, J. Math. Analysis and Applications 17 (1967).
  • [3] S. Bergman, Integral Operators in the Theory of Linear Partial Differential Equa- tions, Springer-Verlag, 1961.
  • [4] F. E. Browder, The Dirichlet problem for linear elliptic equations of arbitrary even order with variable coefficients, Proc. N.A.S. 38 (1952), 230-235.
  • [5] Gunter Hellwig, Partial Differential Equations, Blaisdell.
  • [6] L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8 (1955), 649-675.
  • [7] A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953).

See also

  • Corr : James Calvert. Correction to: ``An integral inequality with applications to the Dirichlet problem''. Pacific Journal of Mathematics volume 23, issue 3, (1967), pp. 631-631.