Pacific Journal of Mathematics

Algebras of global dimension one with a finite ideal lattice.

W. Edwin Clark

Article information

Source
Pacific J. Math., Volume 23, Number 3 (1967), 463-471.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102991723

Mathematical Reviews number (MathSciNet)
MR0223404

Zentralblatt MATH identifier
0173.03302

Subjects
Primary: 16.50
Secondary: 18.00

Citation

Clark, W. Edwin. Algebras of global dimension one with a finite ideal lattice. Pacific J. Math. 23 (1967), no. 3, 463--471. https://projecteuclid.org/euclid.pjm/1102991723


Export citation

References

  • [1] R. Brauer, Some remarkson associative rings and algebras, National Acad. of Sciences-National Research Council, Publication 502, Washington, 1957.
  • [2] H. Cartan and S. EUenberg, Homologicl Algebra, PrincetonUniversityPress, Princeton, 1956.
  • [3] S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961), 13-25.
  • [4] W. E. Clark, Baer rings which arise from certain transitivegraphs, Duke Math. J. Dec. (1966), 647-656.
  • [5] W. E. Clark, Twisted matrix units semigroup algebras (to appear in Duke Math. J.)
  • [6] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Math. Surveys, No. 7, Amer. Math. Soc, 1961.
  • [7] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associa- tive Algebras, Interscience Pub., New York, 1962.
  • [8] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310-319.
  • [9] M. Harada, Hereditary semi-primary rings and triangular matrix rings, Nagoya Math. J. 27 (1966), 463-484.
  • [10] G. Hochschild, On the cohomology of an associative algebra, Ann. of Math. 46 (1945), 58-67.
  • [11] J. P. Jans, Rings and Homology, Holt, New York, 1964.
  • [12] J. P. Jans, On segregated rings and algebras, Nagoya Math. J. 11 (1957), 65-71.
  • [13] I. Kaplansky, Rings of operators, Univ. of Chicago mimeographed notes, 1955.
  • [14] S. Maeda, On a rings whose principal right ideals generated by idempotentsform a lattice, Jour, of Sc. Hiroshima Univ. (1960), 509-525.
  • [15] B. Mitchell, Theory of Categories, Academic Press, New York, 1965.