Pacific Journal of Mathematics

Gaussian Markov expectations and related integral equations.

John A. Beekman and Ralph A. Kallman

Article information

Source
Pacific J. Math., Volume 37, Number 2 (1971), 303-317.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102970605

Mathematical Reviews number (MathSciNet)
MR0308353

Zentralblatt MATH identifier
0215.25803

Subjects
Primary: 28A40
Secondary: 60H20: Stochastic integral equations

Citation

Beekman, John A.; Kallman, Ralph A. Gaussian Markov expectations and related integral equations. Pacific J. Math. 37 (1971), no. 2, 303--317. https://projecteuclid.org/euclid.pjm/1102970605


Export citation

References

  • [1] Donald G. Babbitt, A summation procedure for certain Feynman integrals,J. Math. Physics, 4 (1963), 36-41.
  • [2] Donald G. Babbitt, The Wiener integraland perturbationtheory of the Schroedinger operator, Bull. Amer. Math. Soc, 70 (1964), 254-259.
  • [3] Donald G. Babbitt, The Wiener integral and the Schroedinger operator, Trans. Amer. Math. Soc,116 (1965), 66-78. (Correction, Trans. Amer. Math. Soc. 121 (1966), 549-552.)
  • [4] Donald G. Babbitt, Wiener IntegralRepresentationsforcertain semigroupswhich have infinitesimalgenerators with matrixcoefficients, Bull. Amer. Math. Soc, 73 (1967), 394-397.
  • [5] John A. Beekman, Gaussian processes and generalized Schroedingerequations, J. Math, and Mech. 14 (1965), 789-806.
  • [6] John A. Beekman, Feynman-Cameron integrals, J. Math, and Physics 46 (1967), 253-266.
  • [7] John A. Beekman, Green's functions for generalized Schroedinger equations, Nagoya Math. J., 35 (1969), 133-150.(Correction, Nagoya Math. J. 38 (1970), 199.)
  • [8] John A. Beekman, Sequential Gaussian Markov integrals, Nagoya Math. J., 42 (1971),9-21.
  • [9] R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math, and Physics 39 (1960), 126-140.
  • [10] R. H. Cameron, The Ilstow and Feynman integrals, Journal d'Analyse Mathematique 10 (1962-3), 287-361.
  • [11] R. H. Cameron, Approximationsto certainFeynmanintegrals,Journal d'Analyse Mathematique 21 (1968),337-371.
  • [12] R. H. Cameron, and D. A. Storvick, An operator valued function space integral anda related integral equation, J. Math, and Mech., 18 (1968), 517-552.
  • [13] R. H. Cameron, An Integral Equation Related to the Schroedinger Equation with an Application to Integration in Function Space, to appear in Bochner Memorial Volume.
  • [14] D. A. Darling, and A. J. F. Siegert, Integral Equations for theCharacteristic Functionsof Certain Functionalsof Multi-dimensionalMarkoffProcesses, RAND Report, P-429, RAND Corporation, Santa Monica, California, 1955.
  • [15] Jacob, Feldman, On the Schroedinger and heat equations for nonnegative potentials, Trans. Amer. Math. Soc, 108 (1963), 251-264.
  • [16] R. P. Feynman, Space-time approach to non-relativisticquantummechanics, Reviews of Mod. Physics, 20 (1948), 367-387.
  • [17] E. Hewitt, and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1965.
  • [18] Kiyoshi It, Wiener Integral and Feynman Integral,Proc Fourth Berkeley Symposium on Math. Satistics and Probability, Vol. II, Univ. of Calif. Press, 227-238, 1960.
  • [19] Kiyoshi It, Generalized Uniform Complex Measures in the Hilbertian Metric Space with their Application to the Feynman Integral, Proc. Fifth Berkeley Symposiumon Math. Statistics and Probability, Vol. II, Part 1 (1967), Univ. of Calif. Press, 145-161.
  • [20] G. W. Johnson, and D. L. Skoug, Operator-valued Feynman integrals of certain finite-dimensional functionals, Proc. Amer. Math. Soc, 24 (1970), 774-780.
  • [21] G. W. Johnson, An Operator Valued Function Space Integral: A Sequel to Cameron andStorvick's Paper, to appear.
  • [22] Edward Nelson, Feynman Integrals and the Schroedinger Equation, J. Math. Physics 5 (1964),332-343.
  • [23] D. L. Skoug, and G. W. Johnson, Operator-valued Feynman Integrals of Finite- dimensional Functionals, to appear in the Pacific J. Math.