Pacific Journal of Mathematics

Square integrable primary representations.

Calvin C. Moore

Article information

Source
Pacific J. Math., Volume 70, Number 2 (1977), 413-427.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102811929

Mathematical Reviews number (MathSciNet)
MR0507220

Zentralblatt MATH identifier
0382.22004

Subjects
Primary: 22D12: Other representations of locally compact groups

Citation

Moore, Calvin C. Square integrable primary representations. Pacific J. Math. 70 (1977), no. 2, 413--427. https://projecteuclid.org/euclid.pjm/1102811929


Export citation

References

  • [1] A. Connes, One classification desfacteurs de type III,Ann. Ecole Norm. Sup.4th series,6 (1973), 133-252.
  • [2] M. Duflo and C. C. Moore, On the regular representation of a non-unimodular locally compact group, J. Functional Analysis, 21 (1976), 209-243.
  • [3] G. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53-87.
  • [4] J. N.Phillips, A note on square integrable representations, J. Functional Analysis, 20 (1975),83-92.
  • [5] M. A. Rieffel, Square integrable representations of Hilbert algebras, J. Functional Analysis, 3 (1969), 265-300.
  • [6] J. Rosenberg, Square integrable factor representations of locally compact groups, (to appear).
  • [7] I. E. Segal, A noncommutatie extension of abstract integration, Ann. of Math., 57 (1953), 401-457.
  • [8] C. E. Sutherland, The direct integral theory of weights, and the Plancherel formula, Ph.D. dissertation, UCLA, 1973.