Pacific Journal of Mathematics

Type analysis of the regular representation of a nonunimodular group.

Colin E. Sutherland

Article information

Pacific J. Math., Volume 79, Number 1 (1978), 225-250.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx]
Secondary: 46L45: Decomposition theory for $C^*$-algebras


Sutherland, Colin E. Type analysis of the regular representation of a nonunimodular group. Pacific J. Math. 79 (1978), no. 1, 225--250.

Export citation


  • [1] W. Ambrose, Representation of ergodc flows, Ann. Math., 42 (1941),723-739.
  • [2] Aumann, Measurable utility and the measurable choice Theorem (Research in Game Theory and Mathematical Economics; No. 30, Hebrew University, Jersalem, 1967.
  • [3] A. Connes, Une classification des facteurs de type III, Annales de Ecole Normale Superiure, 4e serie, t. 6. fasc 2, 1973.
  • [4] A. Cones, P. Ghez, R. Lima, D. Testard, and E. J. Woods, Review of crossed pro- ducts of von Neumann algebras, unpublished preprint.
  • [5] J. Dixmier, Sur la representation reguliere dyun groupe localement compact convexe, Ann. Scient. Ec. Norm. Sup., 4e serie t. 2 1969, 423-436.
  • [6] J. Dixmier, Les C*-algebras et leurs representations, Gauthier Villars, 1964.
  • [7] J. Dixmier, Les Algebres d'operateurs dan espace Hilbertien, Gautheir Villars, Paris, 1964.
  • [8] R. Godement, Memoite sur la theorie des characteres dan les groupes localement compacts unimodulaires, J. Math. Pures et AppL, t 30 (1951), 1-110.
  • [9] P. R. Halmos, Lectures on ergodic theory; Chelsea, 1960.
  • [10] W. Kreiger, On non singular transformationsof a measure space I, (Z-Wahrschein- lickeitstheorie verw-Gel Bd II, (1969), 83-99.
  • [11] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc, 85 (1957),134-165.
  • [12] G. W. Mackey, Ergodic theory and virtual groups, Math. Ann., 166, 187-207.
  • [13] L. Auslander and C. C. Moore, Unitaryrepresentationsof solvable Lie groups, Memoirs of the Amer. Math. Soc, No. 62, 1966.
  • [14] D. Montgomery and L. Zippin, Topological transformationgroups, Interscience tracts in pure and applied mathematics, Vol. 1, Interscience.
  • [15] L. Pukansky, Sur la representation reguliere des groupes de Lie resolubles connexes I & II, (C. R. Acad. Sc. t 268 serie A, (1969), 1077-1079 and 1172-1173).
  • [16] S. Sakai, C*-algebras and W*-algebras, (Ergebnisse der Mathematik und iher grenzbiete, Bd 60).
  • [17] I. E. Segal, An extension of PlanchereVs formula to separable unimodular groups, Ann. Math., t 52 (1950),272-292.
  • [18] C. E. Sutherland, Direct integral theory for weights and the Plancherel formula, Queen's Mathematical preprint, Math. Scand. 40 (1977), 209-214.
  • [19] C. E. Sutherland, Crossed products, direct integrals and connes classification of factors, Queen's Mathematical preprint, (1974-8).
  • [20] M. Takesaki, Tomita's theory of modular Hilbert algebras and itsapplications, Lecture notes in Mathematics 128, Springer-Verlag.
  • [21] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1973).
  • [22] N. Tatsuuma, Plancherel formulafor non-unimodular locally compact groups, J. Math. Kyoto University, 12, No. 1, 179-261.
  • [23] V. S. Varadanajan, Geometrey of Quantum Theory, Vol. II, Van Nostrand, 1970.