Pacific Journal of Mathematics
- Pacific J. Math.
- Volume 82, Number 2 (1979), 387-406.
Weak Frobenius reciprocity and compactness conditions in topological groups.
Full-text: Open access
Article information
Source
Pacific J. Math., Volume 82, Number 2 (1979), 387-406.
Dates
First available in Project Euclid: 8 December 2004
Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784882
Mathematical Reviews number (MathSciNet)
MR551698
Zentralblatt MATH identifier
0414.22012
Subjects
Primary: 22D10: Unitary representations of locally compact groups
Secondary: 22D30: Induced representations
Citation
Henrichs, Rolf Wim. Weak Frobenius reciprocity and compactness conditions in topological groups. Pacific J. Math. 82 (1979), no. 2, 387--406. https://projecteuclid.org/euclid.pjm/1102784882
References
- [1] R. J. Blattner, Positive definite measures, Proc. Amer. Math. Soc, 14 (1963), 423- 428.
- [2] J. Dixmier, Les C*-algebreset leurs representations, Paris: Gauthier-Villars 1964.
- [3] R. Felix, R. W. Henrichs and H. L. Skudlarek, Topological Frobeniusreciprocity for protective limits of Lie groups, Math. Z., 165 (1978), 19-28.
- [4] J. M. G. Fell, Weak containment and induced representation of groups II, Trans. Amer. Math. Soc, 110 (1964), 424-447.
- [5] E. C. Gootman, Weak containment and weak Frobenius reciprocity,Proc. Amer. Math. Soc, 54 (1976), 417-422.
- [6] F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis, 4 (1969), 295-315.
- [7] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math., 246 (1971), 1-40.
- [8] R. W. Henrichs, Die Frobeniuseigenschaft FP fur diskrete Gruppen, Math. Z., 147 (1976), 191-199.
- [9] R. W. Henrichs,Uber Fortsetzung positiv definiter Funktionen, Math. Ann., 232 (1978), 131-150.
- [10] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Berlin-Heidelberg-New York, Springer 1963.
- [11] A. Hulanicki and T. Pytlik, On cyclic vectors of induced representations,Proc Amer. Math. Soc, 31 (1972), 633-634.
- [12] E. Kaniuth, Zur harmonischen Analyse klassenkompakter Gruppen, Math. Z., 110 (1969), 297-305.
- [13] E. Kaniuth, Topology in duals of SIN-groups, Math. Z., 134 (1973), 67-80.
- [14] H. Leptin, Zur harmonischen Analyse klassenkompakter Gruppen, Inventiones Math., 5 (1968), 249-254.
- [15] J. R. Liukkonen, Dual spaces of locally compact groups with precompact conjugacy classes, Trans. Amer. Math. Soc, 180 (1973), 85-108.
- [16] C. C. Moore, Groups with finite dimensional irreducible representations,Trans. Amer. Math. Soc, 166 (1972), 401-410.
- [17] R. Mosak, The L1- and C*-algebras of [FIA]B-groups and theirrepresentations, Trans. Amer. Math. Soc, 163 (1972), 277-310.
- [18] M. A. Rieffel, Induced representations of C*-algebras, Advances Math., 13(1974), 167-257.
- [19] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups I, Berlin- Heidelberg-New York, Springer 1972.
- [20] E. Thoma, Uber unitdre Darstellungenabzdhlbarer, diskreter Gruppen, Math. Ann., 153 (1964), 111-138.
- [21] E. Thoma, Zur harmonischen Analyse klassenfiniter Gruppen, Inventiones Math., 3 (1967), 20-42.
- [22] T. W. Wilcox, A note on groups with relatively compact conjugacy classes, Proc Amer. Math. Soc, 42 (1974), 326-329.
Pacific Journal of Mathematics, A Non-profit Corporation

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Examples of groups which are not weakly amenable
Ozawa, Narutaka, Kyoto Journal of Mathematics, 2012 - Duality theorem for inductive limit groups
Tatsuuma, Nobuhiko, Kyoto Journal of Mathematics, 2014 - A product for permutation groups and topological groups
Smith, Simon M., Duke Mathematical Journal, 2017
- Examples of groups which are not weakly amenable
Ozawa, Narutaka, Kyoto Journal of Mathematics, 2012 - Duality theorem for inductive limit groups
Tatsuuma, Nobuhiko, Kyoto Journal of Mathematics, 2014 - A product for permutation groups and topological groups
Smith, Simon M., Duke Mathematical Journal, 2017 - A weak qualitative uncertainty principle for compact groups
Kutyniok, Gitta, Illinois Journal of Mathematics, 2003 - A necessary and sufficient condition for coincidence with the weak topology
Clanin, Joseph and Lee, Kristopher, Involve: A Journal of Mathematics, 2017 - Derivations on certain matrix algebras with applications to compact groups
Abolghasemi, M. and Samea, H., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2009 - Duality theorems and topological structures of groups
Tatsuuma, Nobuhiko, Kyoto Journal of Mathematics, 2014 - On the frobenius reciprocity theorem for square integrable representations of nonunimodular groups
Kunze, Ray A., , 1987 - Total and local topological indices for maps of Hilbert and Banach manifolds
Gliklikh, Yuri E., Topological Methods in Nonlinear Analysis, 2000 - Topological canal foliations
HECTOR, Gilbert, LANGEVIN, Rémi, and WALCZAK, Paweł, Journal of the Mathematical Society of Japan, 2019