Pacific Journal of Mathematics

Weak Frobenius reciprocity and compactness conditions in topological groups.

Rolf Wim Henrichs

Article information

Source
Pacific J. Math., Volume 82, Number 2 (1979), 387-406.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784882

Mathematical Reviews number (MathSciNet)
MR551698

Zentralblatt MATH identifier
0414.22012

Subjects
Primary: 22D10: Unitary representations of locally compact groups
Secondary: 22D30: Induced representations

Citation

Henrichs, Rolf Wim. Weak Frobenius reciprocity and compactness conditions in topological groups. Pacific J. Math. 82 (1979), no. 2, 387--406. https://projecteuclid.org/euclid.pjm/1102784882


Export citation

References

  • [1] R. J. Blattner, Positive definite measures, Proc. Amer. Math. Soc, 14 (1963), 423- 428.
  • [2] J. Dixmier, Les C*-algebreset leurs representations, Paris: Gauthier-Villars 1964.
  • [3] R. Felix, R. W. Henrichs and H. L. Skudlarek, Topological Frobeniusreciprocity for protective limits of Lie groups, Math. Z., 165 (1978), 19-28.
  • [4] J. M. G. Fell, Weak containment and induced representation of groups II, Trans. Amer. Math. Soc, 110 (1964), 424-447.
  • [5] E. C. Gootman, Weak containment and weak Frobenius reciprocity,Proc. Amer. Math. Soc, 54 (1976), 417-422.
  • [6] F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis, 4 (1969), 295-315.
  • [7] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math., 246 (1971), 1-40.
  • [8] R. W. Henrichs, Die Frobeniuseigenschaft FP fur diskrete Gruppen, Math. Z., 147 (1976), 191-199.
  • [9] R. W. Henrichs,Uber Fortsetzung positiv definiter Funktionen, Math. Ann., 232 (1978), 131-150.
  • [10] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Berlin-Heidelberg-New York, Springer 1963.
  • [11] A. Hulanicki and T. Pytlik, On cyclic vectors of induced representations,Proc Amer. Math. Soc, 31 (1972), 633-634.
  • [12] E. Kaniuth, Zur harmonischen Analyse klassenkompakter Gruppen, Math. Z., 110 (1969), 297-305.
  • [13] E. Kaniuth, Topology in duals of SIN-groups, Math. Z., 134 (1973), 67-80.
  • [14] H. Leptin, Zur harmonischen Analyse klassenkompakter Gruppen, Inventiones Math., 5 (1968), 249-254.
  • [15] J. R. Liukkonen, Dual spaces of locally compact groups with precompact conjugacy classes, Trans. Amer. Math. Soc, 180 (1973), 85-108.
  • [16] C. C. Moore, Groups with finite dimensional irreducible representations,Trans. Amer. Math. Soc, 166 (1972), 401-410.
  • [17] R. Mosak, The L1- and C*-algebras of [FIA]B-groups and theirrepresentations, Trans. Amer. Math. Soc, 163 (1972), 277-310.
  • [18] M. A. Rieffel, Induced representations of C*-algebras, Advances Math., 13(1974), 167-257.
  • [19] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups I, Berlin- Heidelberg-New York, Springer 1972.
  • [20] E. Thoma, Uber unitdre Darstellungenabzdhlbarer, diskreter Gruppen, Math. Ann., 153 (1964), 111-138.
  • [21] E. Thoma, Zur harmonischen Analyse klassenfiniter Gruppen, Inventiones Math., 3 (1967), 20-42.
  • [22] T. W. Wilcox, A note on groups with relatively compact conjugacy classes, Proc Amer. Math. Soc, 42 (1974), 326-329.