Pacific Journal of Mathematics

Separation, retractions and homotopy extension in semialgebraic spaces.

Hans Delfs and Manfred Knebusch

Article information

Source
Pacific J. Math., Volume 114, Number 1 (1984), 47-71.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708971

Mathematical Reviews number (MathSciNet)
MR755482

Zentralblatt MATH identifier
0548.14008

Subjects
Primary: 14G30
Secondary: 11E10: Forms over real fields 12D15: Fields related with sums of squares (formally real fields, Pythagorean fields, etc.) [See also 11Exx] 14F35: Homotopy theory; fundamental groups [See also 14H30] 57P05: Local properties of generalized manifolds 57Q99: None of the above, but in this section

Citation

Delfs, Hans; Knebusch, Manfred. Separation, retractions and homotopy extension in semialgebraic spaces. Pacific J. Math. 114 (1984), no. 1, 47--71. https://projecteuclid.org/euclid.pjm/1102708971


Export citation

References

  • [Bo] N. Bourbaki, Topologie Generale, Hermann, Paris, 1971.
  • [B] G. W. Brumfiel, Partially ordered rings and semialgebraic geometry, London Math. Soc. Lecture Notes Series 37, Cambridge University Press 1979.
  • [D] H. Delfs, Kohomologie affiner semialgebraischer Rume, Dissertation, Regensburg 1980.
  • [DK,] H. Delfs,] H. Delfs,] H. Delfs,] H. Delfs and M. Knebusch, Semialgebraic topology over a real closedfield I: Paths and components in the set of rational points of an algebraic variety, Math. Z., 177 (1981), 107-129.
  • [DK2] H. Delfs, Semialgebraic topology over a real closedfield II: Basic theory of semialge- braic spaces, Math. Z., 178 (1981), 175-213.
  • [DK3] H. Delfs, On the homology of algebraic varieties over real closed fields, J. Reine Angew. Math., 335 (1982), 122-163.
  • [Do] A. Dold, Lectures on Algebraic Topology, Springer, Berlin -- Heidelberg -- New York, 1972.
  • [R] R. Robson, Embedding semi-algebraic spaces, Math. Z., 183 (1983), 365-370.
  • [S] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.