Pacific Journal of Mathematics

Strongly analytic subspaces and strongly decomposable operators.

Jon C. Snader

Article information

Source
Pacific J. Math., Volume 115, Number 1 (1984), 193-202.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102708420

Mathematical Reviews number (MathSciNet)
MR762210

Zentralblatt MATH identifier
0545.47021

Subjects
Primary: 47B40: Spectral operators, decomposable operators, well-bounded operators, etc.
Secondary: 47A15: Invariant subspaces [See also 47A46]

Citation

Snader, Jon C. Strongly analytic subspaces and strongly decomposable operators. Pacific J. Math. 115 (1984), no. 1, 193--202. https://projecteuclid.org/euclid.pjm/1102708420


Export citation

References

  • [1] C. Apostol, Restrictions and quotients of decomposable operators in a Banach space, Rev. Roumaine Math. Pures Appl., 13 (1968), 147-150.
  • [2] E. Bishop, A duality theorem for arbitrary operators, Pacific J. Math., 9 (1959), 379-397.
  • [3] I. Colojoara and C. Foia, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  • [4] N. Dunford and J. T. Schwartz, Linear Operators, Parts I, III, Wiley-Interscience, New York, 1958,1971.
  • [5] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Mathematics #623, Springer-Verlag, New York, 1977.
  • [6] C. Foia, On the maximal spectral spaces of a decomposable operator, Rev. Roumaine Math. Pures Appl., 15 (1970), 1599-1606.
  • [7] C. Foia, Spectral maximal spaces and decomposable operators in Banach space, Arch. Math., (Basel) 14 (1963), 341-349.
  • [8] S. Frunza, The single-valued extension property for coinduced operators, Rev. Rou- maine Math. Pures Appl., 18 (1973), 1061-1065.
  • [9] R. Lange, A purely analytic criterion for a decomposable operator, Glasgow Math. J., 21 (1980), 69-70.
  • [10] R. Lange, Strongly analytic subspaces, in Operator theory and functional analysis, edited by I. Erdelyi, Research Notes in Mathematics #38, Pitman, San Francisco, 1979.
  • [11] J. C. Snader, Bishop's condition beta and decomposable operators, Ph.D. Thesis, University of Illinois, Urbana, 1982.