Pacific Journal of Mathematics

Acceleration by subsequence transformations.

William F. Ford and Thomas A. Keagy

Article information

Pacific J. Math., Volume 132, Number 2 (1988), 357-362.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 65B10: Summation of series
Secondary: 40D20: Summability and bounded fields of methods


Keagy, Thomas A.; Ford, William F. Acceleration by subsequence transformations. Pacific J. Math. 132 (1988), no. 2, 357--362.

Export citation


  • [I] C. Brezinski, J. P. Delahaye, and B. Germain-Bonne,Convergence acceleration by extraction of linear subsequences, Siam J. Numer. Anal., 20 (1983), 1099- 1105.
  • [2] D. F. Dawson, Matrix summability over certain classesof sequencesorderedwith respect to rate of convergence,Pacific J. Math., 24 (1968), 51-56.
  • [3] J. P. Delahaye and B. Germain-Bonne, The set of logarithmically convergent sequences cannot be accelerated, Siam J. Numer. Anal., 19 (1982), 840-844.
  • [4] J. A. Fridy, Absolute summability matrices that are stronger than the identity map, Proc. Amer. Math. Soc, 47 (1975), 112-118.
  • [5] J. A. Fridy, Minimal rates of summability, Canad. J. Math., 30 (1978), 808-816.
  • [6] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.
  • [7] R. E. Powell and S. M. Shah, Summability Theory and Applications, Van Nos- trand Reinhold, London, 1972.
  • [8] H. E. Salzer, A simple method for summing certain slowly convergent series, J. Math, and Phys., 33 (1955), 356-359.
  • [9] D. A. Smith and W. F. Ford, Acceleration of linear and logarithmical conver- gence, Siam J. Numer. Anal., 16 (1979), 223-240.
  • [10] J. Wimp, Sequence Transformations and Their Applications, Academic Press, New York, 1981.
  • [II] P. Wynn, A note on the generalized Euler transformation, Computer J., 14 (1971), 437-441.