Pacific Journal of Mathematics

Harmonic analysis on exponential solvable homogeneous spaces: the algebraic or symmetric cases.

Ronald L. Lipsman

Article information

Source
Pacific J. Math., Volume 140, Number 1 (1989), 117-147.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102647255

Mathematical Reviews number (MathSciNet)
MR1019070

Zentralblatt MATH identifier
0645.43010

Subjects
Primary: 22E27: Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
Secondary: 43A85: Analysis on homogeneous spaces

Citation

Lipsman, Ronald L. Harmonic analysis on exponential solvable homogeneous spaces: the algebraic or symmetric cases. Pacific J. Math. 140 (1989), no. 1, 117--147. https://projecteuclid.org/euclid.pjm/1102647255


Export citation

References

  • [1] L. Auslander and B. Kostant, Polarizationand unitary representationsofsolvable Lie groups, Invent. Math., 14 (1971), 255-354.
  • [2] Y. Benoist, Multiplicite un pour les espaces symtriques exponentiels, Mem. Soc. Math. France, 15 (1984), 1-37.
  • [3] L. Corwin and F. Greenleaf (with G. Grelaud), Direct integraldecompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc, 304 (1987), 549-583.
  • [4] L. Corwin and F. Greenleaf, Spectrum and multiplitiesfor restrictionsof unitary representationsin nilpotent Lie groups,Pacific J. Math., 135 (1988), 233-267.
  • [5] M. Duflo, Sur les extensions des representationsirreductiblesdes groupes de Lie nilpotents, Ann. Sci. Ecole Norm. Sup., 5 (1972), 71-120.
  • [6] M. Duflo, Constructions de representations unitaires d'un groupe de Lie, Har- monic Analysis and Group Representations, C.I.M.E., 1982, 129-222; also "Theorie de Mackey pour les groupes de Lie algebres" Acta Math., 149 (1982), 153-213.
  • [7] H. Fujiwara, Representations monomiales des groupes de Lie nilpotents, Pacific J. Math., 127 (1987), 329-352.
  • [8] H. Fujiwara and S. Yamagami, Certaines representations monomiales d'un groupe de Lie resolubleexponentiel, Advanced Studies in Pure Math., Kyoto, (1986), 153-190.
  • [9] A. Kirillov, Unitary representationsof nilpotent Lie groups,Russian Math. Sur- veys, 17 (1962), 53-104.
  • [10] A. Kleppner and R. Lipsman, The Plancherel formula for group extensions, I, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-515; II, 6 (1973), 103-132.
  • [11] R. Lipsman, Charactersof Lie groups II, J. D'Analyse, 31 (1977), 257-286.
  • [12] R. Lipsman, Orbit theory and harmonicanalysis on Lie groups with co-compact nil- radical J. Math. Pures. et Appl., 59 (1980), 337-374.
  • [13] R. Lipsman, Harmonic induction on Lie groups, J. fur die Reine und Ang. Mat., 344 (1983), 120-148.
  • [14] R. Lipsman, On the existence of a generalized Weil representation, Proc. Conf. on Group Reps. (Marseille, 1982), Lecture Notes in Math., vol. 1020, 161-278.
  • [15] R. Lipsman, On the existence of metric polarizations, Rocky Mountain J. Math., 15 (1985), 13-31.
  • [16] R. Lipsman, Harmonicanalysison non-semisimple symmetric spaces,Israel J. Math., 54(1986), 335-350.
  • [17] R. Lipsman, Orbital parameters for induced and restricted representations, Trans. Amer. Math. Soc, 313 (1989), 433-473.
  • [18] C. Moore, Representationsof solvableand nilpotentgroups and harmonic anal- ysis on nil and solvmanifolds, Proc. Symp. Pure Math., 24 (1973), 3-44.
  • [19] L. Pukanszky, Unitary representationsof solvable Lie groups, Ann. Sci. Ecole Norm. Sup., 4 (1971), 457-608; also Characters of connected Lie groups, Acta Math., 133(1974), 81-137.
  • [20] L. Pukanszky, Unitaryrepresentations ofLie groupswith co-compactradicaland applications, Trans. Amer. Math. Soc, 236 (1978), 1-50.
  • [21] R. Strichartz, Harmonic analysis on Grassmanianbundles,Trans. Amer. Math. Soc, 296(1986), 387-409.