Pacific Journal of Mathematics

Isometries of tridiagonal algebras.

Young Soo Jo

Article information

Source
Pacific J. Math., Volume 140, Number 1 (1989), 97-115.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102647254

Mathematical Reviews number (MathSciNet)
MR1019069

Zentralblatt MATH identifier
0691.47007

Subjects
Primary: 47D25
Secondary: 46L99: None of the above, but in this section

Citation

Jo, Young Soo. Isometries of tridiagonal algebras. Pacific J. Math. 140 (1989), no. 1, 97--115. https://projecteuclid.org/euclid.pjm/1102647254


Export citation

References

  • [I] W. Arveson, Operator algebras and invariant subspaces, Ann. of Math., 100 (1974), 443-532.
  • [2] F. Gilfeather and R. L. Moore, Isomorphisms of certain CSL algebras, J. Funct. Anal., 67 (1986), 264-291.
  • [3] F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras,Topics in Modern Operator Theory, Advances and Ap- plications, 2, Birkhauser (1982).
  • [4] F. Gilfeather, Derivations on certain CSL algebras,J. Operator Theory, 11(1) (1984), 91-108.
  • [5] F. Gilfeather, A. Hopenwasser and D. Larson, Reflexive algebras with finite width lattices', tensor products, cohomology, compact perturbations:, J. Funct. Anal., 55(1984), 176-199.
  • [6] P. R. Halmos, A Hubert Space Problem Book, Second Edition, Springer-Verlag, New York (1982).
  • [7] A. Hopenwasser, C. Laurie and R. L. Moore, Reflexive algebraswithcompletely distributive subspace lattices,J. Operator Theory, 11 (1984), 91-108.
  • [8] R. Kadison, Isometries of operatoralgebras, Ann. of Math., 54(2) (1951), 325- 338.
  • [9] W. Longstaf, Strongly reflexive lattices, J. London Math. Soc, 2(11) (1975), 491-498.
  • [10] R. L. Moore and T. T. Trent, Isometries of nest algebra,preprint, (1987).
  • [II] H. L. Royden, Real Analysis, The Macmillan Company, New York, (1968).