Pacific Journal of Mathematics

The structure of pure completely bounded and completely positive multilinear operators.

Zhong-Jin Ruan

Article information

Source
Pacific J. Math., Volume 143, Number 1 (1990), 155-173.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102646205

Mathematical Reviews number (MathSciNet)
MR1047404

Zentralblatt MATH identifier
0718.46025

Subjects
Primary: 46L05: General theory of $C^*$-algebras
Secondary: 46L10: General theory of von Neumann algebras 46M05: Tensor products [See also 46A32, 46B28, 47A80] 47A99: None of the above, but in this section

Citation

Ruan, Zhong-Jin. The structure of pure completely bounded and completely positive multilinear operators. Pacific J. Math. 143 (1990), no. 1, 155--173. https://projecteuclid.org/euclid.pjm/1102646205


Export citation

References

  • [1] W. B. Arverson, Subalgebras of C*-algebras, Acta Math., 123 (1969), 142-224.
  • [2] G. Choquet, Lectures on Analysis, W. A. Benjamin, Inc.,1969.
  • [3] E. Christensen, E. G. Efros and A. M. Sinclair, Completely bounded multilinear maps and C*-algebraic cohomology, Invent. Math., 90 (1987), 279-296.
  • [4] E. Christensenand A. M. Sinclair,Representations of completely bounded mul- tilinear operators,J. Funct. Anal., 72 (1987), 151-181.
  • [5] E. G. Efros and U. Haagerup, Lifting problems and local reflexivity for C*- algebras,Duke Math. J., 52 (1985), 103-128.
  • [6] E. G. EfFros and A. Kishimoto, Module maps and Hochschild-Johnson cohomol- ogy, Indiana J. Math., 36 (1987), 257-276.
  • [7] E. G. Efros and J.-Z. Ruan, Representations of operator bimodules and their applications, J. Operator Theory, 19 (1988), 137-157.
  • [8] E. G. Efros and J.-Z. Ruan,Multivariable multipliers for groupsand their operatorsalgebras, to appear.
  • [9] P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
  • [10] U. Haagerup, Decomposition of completely bounded maps on operatoralgebras, unpubl. ms. 1980.
  • [11] U. Haagerup, The Grothendieck inequality for bilinear forms on C*-algebras, Adv. in Math., 56(1984),93-116.
  • [12] V. I. Paulsen, Completely bounded maps on C*-algebras and invariant operator ranges, Proc. Amer. Math. Soc, 86 (1982), 91-96.
  • [13] V. I. Paulsen and R. R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal., 73 (1987), 258-276.
  • [14] Z.-J. Ruan, Subspaces of C*-algebras, J. Funct. Anal., 76 (1988), 217-230.
  • [15] R. R. Smith, Completely bounded maps between C* -algebras, J. London Math. Soc. (2), 27(1983), 157-166.
  • [16] W. F. Stinspring,Positivefunctions on C*-algebras, Proc. Amer. Math. Soc, 6 (1955), 211-216.
  • [17] M. Takesaki, Theory of OperatorAlgebras I, Springer-Verlag, Berlin, 1979.
  • [18] G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal., 40 (1981), 127-150.