Pacific Journal of Mathematics

Codes, transforms and the spectrum of the symmetric group.

Paul H. Edelman and Dennis White

Article information

Source
Pacific J. Math., Volume 143, Number 1 (1990), 47-67.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102646202

Mathematical Reviews number (MathSciNet)
MR1047401

Zentralblatt MATH identifier
0741.05048

Subjects
Primary: 20C30: Representations of finite symmetric groups
Secondary: 05C25: Graphs and abstract algebra (groups, rings, fields, etc.) [See also 20F65] 05C50: Graphs and linear algebra (matrices, eigenvalues, etc.) 94B60: Other types of codes

Citation

Edelman, Paul H.; White, Dennis. Codes, transforms and the spectrum of the symmetric group. Pacific J. Math. 143 (1990), no. 1, 47--67. https://projecteuclid.org/euclid.pjm/1102646202


Export citation

References

  • [Ba] L. Babai, The spectra of Cayley graphs, J. Combinatorial Theory Ser. B, 27 (1979), 180-189.
  • [Be] C. Berge, Principles of Combinatorics, Academic Press, New York, 1971.
  • [Bj] A. Bjorner, Orderings of Coxeter groups, Proc. AMS-NSF Conference on Combinatorics and Algebra, Boulder 1983 (ed. C. Greene), Contemporary Mathematics, 34 (1984), 175-195.
  • [DG] P. Diaconis and R. Graham, The Radon transform on Z* , Pacific J. Math., 118(1985), 323-345.
  • [DS] P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, 57 (1981), 159-179.
  • [CDS] D. M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application, Academic Press, New York, 1980.
  • [GM] A. M. Garsia nd T. J. McLarnan, Relations between Young's natural and the Kazhdan-Lusztig representations of Sn, Adv. in Math., 69 (1988), 32-92.
  • [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebra, Invent. Math., 53 (1979), 165-184.
  • [Kn] D. E. Knuth, The Art of Computer Programming, volume 3, Addison-Wesley Publishing Co., Reading, MA, 1973.
  • [JK] G. D. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, Mass., 1981.
  • [RT] O. Rothaus and J. G. Thompson, A combinatorial problem in the symmetric group, Pacific J. Math., 18 (1966), 175-178.
  • [SW] D. W. Stanton and D. E. White, Constructive Combinatorics, Springer-Verlag, New York, 1986.