Pacific Journal of Mathematics

The classification of flat compact complete space-forms with metric of signature $(2,2)$.

Ming Wang

Article information

Source
Pacific J. Math., Volume 148, Number 1 (1991), 181-200.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644790

Mathematical Reviews number (MathSciNet)
MR1091538

Zentralblatt MATH identifier
0732.57017

Subjects
Primary: 53C50: Lorentz manifolds, manifolds with indefinite metrics
Secondary: 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15] 57S30: Discontinuous groups of transformations

Citation

Wang, Ming. The classification of flat compact complete space-forms with metric of signature $(2,2)$. Pacific J. Math. 148 (1991), no. 1, 181--200. https://projecteuclid.org/euclid.pjm/1102644790


Export citation

References

  • [1] L. Auslander, Simply transitive groups of affine motions, Amer. J. Math., 99 (1977), 809-821.
  • [2] A.Borel, Linear Algebraic Groups,Benjamin, NewYork, 1969.
  • [3] D.Fried, Flat spacetimes, J.Differential Geometry, 26(1987), 385-396.
  • [4] D.Fried andW. Goldman, Three-dimensional affine crystallographicgroups, Adv. inMath., 47 (1983),1-49.
  • [5] B.Kostant and D. Sullivan, TheEuler characteristicof an affinespaceform is zero, Bull. Amer. Math. Soc,81(1975), 937-938.
  • [6] J. Milnor, Onfundamental groups of complete affinelyflat manifolds, Adv. in Math., 525(1977), 178-187.
  • [7] C. T. C. Wall, Geometric structures on compact complete analyticsurfaces, Topology, 25No. 2, (1986), 119-153.
  • [8] H.Zassenhaus, Beweis eines Satzes uber diskrete Grupen, Abh.Math. Sem. Hamb. Univ., 12 (1938), 289-312.