Pacific Journal of Mathematics

On the density of twistor elementary states.

M. G. Eastwood and A. M. Pilato

Article information

Source
Pacific J. Math., Volume 151, Number 2 (1991), 201-215.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102637077

Mathematical Reviews number (MathSciNet)
MR1132385

Zentralblatt MATH identifier
0736.32023

Subjects
Primary: 22E46: Semisimple Lie groups and their representations
Secondary: 32L25: Twistor theory, double fibrations [See also 53C28] 81R25: Spinor and twistor methods [See also 32L25]

Citation

Eastwood, M. G.; Pilato, A. M. On the density of twistor elementary states. Pacific J. Math. 151 (1991), no. 2, 201--215. https://projecteuclid.org/euclid.pjm/1102637077


Export citation

References

  • [1] J. Adams, Unitary highest weight modules, Adv. in Math., 63 (1987), 113-137.
  • [2] A. Andreotti and H. Grauert, Thoremes de finitude pour cohomologie des es- paces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
  • [3] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem I, II, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 325-363 and 747-806.
  • [4] M. F. Atiyah and W. Schmid, A geometric construction of the discreteseries for semisimple Lie groups,Inv. Math., 42 (1977), 1-62.
  • [5] R. J. Baston, Local cohomology, elementary states, and evaluation, Twistor Newsletter, 22 (1986), 8-13 (reprinted in "Further Advances in Twistor The- ory", (eds. L. J. Mason and L. P. Hughston), pp. 144-151, Pitman Research Notes in Math., 231, Longman, Harlow 1990).
  • [6] R. J. Baston and M. G. Eastwood, The Penrose Transform: its Interaction with Representation Theory, Oxford University Press, 1989.
  • [7] R. Bott, Homogeneous vector bundles, Ann. Math., 66 (1957), 203-248.
  • [8] T. P. Branson, Grouprepresentationsarisingfrom Lorentz conformal geometry, J. Funct. Anal, 74 (1987), 199-291.
  • [9] H. Cartan and J.-P. Serre, Un thoreme de finitude concernant les varitesana- lytiques compactes, C. R. Acad. Sci. Paris, 237 (1953), 128-130.
  • [10] E. G. Dunne,Hyperfunctions in representationtheory and mathematical physics in "Integral Geometry", (eds. R. L. Bryant et al.), pp. 51-65, Contemp.Math., vol. 63, Amer. Math. Soc, Providence, RI, 1987.
  • [11] M. G. Eastwood and L. P. Hughston, Massless fields based on a line, in [27], 101-109.
  • [12] M. G. Eastwood, R. Penrose, and R. O. Wells, Jr., Cohomology and massless fields, Comm. Math. Phys., 78 (1981), 305-351.
  • [13] M. G. Eastwoodand M. L. Ginsberg, Duality in twistor theory,Duke Math. J., 48(1981), 177-196.
  • [14] M. G. Eastwood, Thegeneralized twistor transform and unitary representations of SU(/?, q), preprint.
  • [15] M. G. Eastwood, Thegeneralized Penrose-Wardtransform, Math. Proc. Camb. Phil. Soc, 97(1985), 165-187.
  • [16] M. G. Eastwood, A duality for homogeneous bundles on twistor space, J. London Math. Soc, 31 (1985), 349-356.
  • [17] M. G.EastwoodandJ. W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys., 109 (1987), 207-228.
  • [18] T. J. Enright, R. Howe, and N. R. Wallach, A classification of unitary highest weight modules, in "Representation Theory of Reductive Lie Groups", (ed. P. C. Trombi), pp. 268-407, Birkhauser,Basel/Boston/Stuttgart, 1983.
  • [19] M.Fierz, Jberden Drehimpuls von Teilchenmit Ruhemasse null und beliebigen Spin, Helv. Phys. Acta, 13 (1940), 45-60.
  • [20] M. L. Ginsberg, A cohomological scalarproduct construction, in [27],293-300.
  • [21] M. L. Ginsberg, A Cohomological Approach to Scattering Theory,D. Phil, thesis, Oxford University, 1980.
  • [22] R. Godement, TopologieAlgebrique et Theorie des Faisceaux, Hermann, Paris, 1964.
  • [23] E. Grgin, A Global Techniquefor the Study ofSpinor Fields, Ph.D. thesis, Syra- cuse University,1966.
  • [24] L. Gross, Norm invarianceof mass-zeroequations under the conformal group,J. Math. Phys., 5 (1963), 687-695.
  • [25] C. D. Hill, The Cauchy problem for d , in "Partial Differential Equations", Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc, Providence, RI,1973, pp. 135-143.
  • [26] A. P. Hodges, Twistor diagrams, Physica, 114A (1982), 157-175.
  • [27] L. P. Hughston and R. S. Ward (eds.), Advances in Twistor Theory,Research Notes in Math., 37, Pitman, San Francisco/London/Melbourne, 1979.
  • [28] H. P. Jakobsen and M. Vergne, Wave and Dirac operators and representations of the conformal group, J. Funct. Anal., 24 (1977), 52-106.
  • [29] H. P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules, J. Funct. Anal., 52 (1983), 385-412.
  • [30] M.Kashiwaraand M.Vergne, On the Segal-Shale- Weil representations and har- monic polynomials, Inv. Math., 44 (1978), 1-47.
  • [31] H. B. Laufer, On sheaf cohomology and envelopes of holomorphy, Ann. Math., 84(1966), 102-118.
  • [32] H. B. Laufer, On Serre duality and envelopes of holomorphy, Trans. Amer. Math. Soc, 128(1967), 414-436.
  • [33] J. A. McLennan, Jr., Conformal invarianceand conservation lawsfor relativistic wave equationsfor zero rest mass, Nuovo Cimento, 3 (1956), 1360-1379.
  • [34] R. Penrose, Twistor algebra, J. Math. Phys., 8 (1967), 345-366.
  • [35] R. Penrose and M.A.H. MacCallum, Twistor theory, an approach to thequan- tisation of fields and space-time,Phys. Rep.,6C (1972), 241-316.
  • [36] R. Penrose, Twistor theory, its aims and achievements, in "Quantum Gravity: an Oxford Symposium", pp. 268-407, Clarendon Press, Oxford, 1975.
  • [37] R. Penrose and W. Rindler, Spinors and Space-time, Vol. 2, Cambridge Uni- versity Press, 1986.
  • [38] J. Rawnsley, W. Schmid, and J. A. Wolf, Singular unitary representations and indefinite harmonic theory, J. Funct. Anal., 51 (1983), 1-114.
  • [39] G. Scheja, Riemannsche Hebbarkeitsstzefur Cohomologieklassen, Math. Ann., 144 (1961), 345-360.
  • [40] W. Schmid,Homogeneous complex manifolds and representations ofsemisimple Lie groups, Ph.D. thesis, University of California-Berkeley, 1967.
  • [41] W. Schmid, L2-cohomology and the discrete series, Ann. Math., 103 (1976), 375-394.
  • [42] W. Schmid, Boundary value problems for group invariant differential equations, in "Proceedings of the Cartan Symposium,Lyon 1984", pp. 311-322, Asterisque, 1985.
  • [43] W. Schmid and J. A. Wolf, Globalizations of Harish Chandra modules, Bull. Amer. Math. Soc, 17 (1987), 117-120.
  • [44] W. Schmidand J. A. Wolf, Geometric quantization and derivedfunctor modules for semisimple Lie groups,J. Funct. Anal., 90 (1990), 48-112.
  • [45] J.-P.Serre, Un theoreme de dualite, Comm. Math. Helv., 29 (1955), 9-26.
  • [46] G. Warner, Harmonic Analysis on Semi-simple Lie GroupsI, Springer,Berlin/ Heidelberg/New York, 1972.
  • [47] R. Zierau, Geometric construction of certain highest weight modules, Proc. Amer. Math. Soc, 95 (1985), 631-635.

See also

  • Corr : M. Eastwood, A. Pilato. Correction to: ``On the density of twistor elementary states''. Pacific Journal of Mathematics volume 155, issue 1, (1992), pp. 199-199.