Pacific Journal of Mathematics

A hybrid of theorems of Vinogradov and Piatetski-Shapiro.

Antal Balog and John Friedlander

Article information

Source
Pacific J. Math., Volume 156, Number 1 (1992), 45-62.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102635129

Mathematical Reviews number (MathSciNet)
MR1182255

Zentralblatt MATH identifier
0755.11031

Subjects
Primary: 11P32: Goldbach-type theorems; other additive questions involving primes
Secondary: 11N05: Distribution of primes

Citation

Balog, Antal; Friedlander, John. A hybrid of theorems of Vinogradov and Piatetski-Shapiro. Pacific J. Math. 156 (1992), no. 1, 45--62. https://projecteuclid.org/euclid.pjm/1102635129


Export citation

References

  • [De] J.-M. Deshouillers, Nombres premiers de laforme [nc], C. R. Acad. Sci. Paris, Ser. A-B, 282 (3) (1976), A131-A133.
  • [EN] P. Erds and M. B. Nathanson, Lagrange's Theorem and Thin Subsequences of Squares, Contributions to Probability (J. Gani, V. K. Rohatgi, eds.), Aca- demic Press, New York, 1981, 3-9.
  • [HB] D. R. Heath-Brown, The Pjateckii-Sapiro prime number theorem, J. Number Theory, 16 (1983) 242-266.
  • [HB2] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity\ Canad. J. Math., 34 (1982), 1365-1377.
  • [K] G. Kolesnik, Primes of theform [nc], Pacific J. Math., 118 (1985), 437-447.
  • [PS] I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of theform [/(m)], Mat. Sb., 33 (1953), 559-566.
  • [Ti] E. C. Titchmarsh, The Theory oftheRiemann Zeta-function, Oxford, London, 1951.
  • [Va] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tracts in Math.
  • [80] Cambridge University Press, Cambridge, 1981.
  • [Vi] I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk SSSR, 15 (1937), 291-294.
  • [Wi] E. Wirsing, Thin subbases, Analysis, 6 (1986), 285-308.