Pacific Journal of Mathematics

On a Plancherel formula for certain discrete, finitely generated, torsion-free nilpotent groups.

Carolyn Pfeffer Johnston

Article information

Source
Pacific J. Math., Volume 167, Number 2 (1995), 313-326.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102620869

Mathematical Reviews number (MathSciNet)
MR1328332

Zentralblatt MATH identifier
0842.22011

Subjects
Primary: 22E27: Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
Secondary: 22D10: Unitary representations of locally compact groups 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx] 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.

Citation

Johnston, Carolyn Pfeffer. On a Plancherel formula for certain discrete, finitely generated, torsion-free nilpotent groups. Pacific J. Math. 167 (1995), no. 2, 313--326. https://projecteuclid.org/euclid.pjm/1102620869


Export citation

References

  • [1] L. Auslander, L. Green and F. Hahn, Flows on Homogeneous Spaces, Annals of Math. Studies, Vol. 53, Princeton University Press,Princeton, N.J, 1963.
  • [2] J. W. S. Cassels, An Introduction to Diophantine Approximation,Cam- bridge University Press, 1957.
  • [3] L. Corwin and F. Greenleaf, Representations of Nilpotent Lie Groups and their Applications,Part I, Basic Theory and Examples, Cambridge University Press, Cambridge, 1990.
  • [4] L. Corwin and C. Pfeffer, On factor representations of discreteratio- nal nilpotent groups and the Plancherel formula, Pacific. J. Math., 162 (1994), 261-175.
  • [5] R. Howe, On representationsof discrete, finitely generated, torsion-free, nilpotent groups, Pacific J. Math., 73, No. 2 (1977), 281-306.