Pacific Journal of Mathematics

Smooth decomposition of finite multiplicity monomial representations for a class of completely solvable homogeneous spaces.

Bradley N. Currey

Article information

Source
Pacific J. Math., Volume 170, Number 2 (1995), 429-460.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102370878

Mathematical Reviews number (MathSciNet)
MR1363872

Zentralblatt MATH identifier
0859.22005

Subjects
Primary: 22E27: Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)

Citation

Currey, Bradley N. Smooth decomposition of finite multiplicity monomial representations for a class of completely solvable homogeneous spaces. Pacific J. Math. 170 (1995), no. 2, 429--460. https://projecteuclid.org/euclid.pjm/1102370878


Export citation

References

  • [1] C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc, 321 (1990), 85-116
  • [2] C. Benson, J. Jenkins and G. Ratcliff, Bounded K-spherical functions on Heisenberg groups, J. Punct. Anal., 105 (1992), 409-443
  • [3] P. Bernat et al., Representations des groupes de Lie resolubles, Dunod, Paris, 1972
  • [4] G. Carcano, A commutativity condition for algebras of invariant functions, Bull. U.M.I., 7 (1987), 1091-1105
  • [5] L. Corwin and F. Greenleaf, Commutativity of invariant differential operators on nilpotent homogeneous spaces K\G with finite multiplicity, Comm.Pure Appl. Math., Vol. XLV, No. 6(1992), 681-748
  • [6] L. Corwin, F. Greenleaf and G. Grelaud, Direct integral decompositions and mul- tiplicites for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc, 304 (1987), 549-583
  • [7] B. Currey and R. Penney, The structure of the space of coadjoint orbits of a com- pletely solvable Lie group, Michigan Math. Jour., 36 (1989), 309-320
  • [8] B .Currey, The structure of the space of coadjoint orbits of an exponential solvable Lie group, Trans. Amer. Math. Soc, 332 (1992), 241-269
  • [9] H. Fujiwara, Representations monomiales d'un group de Lie nilpotent, Pacific J. Math., 127 (1987), 329-352
  • [10] H. Fujiwara, Representations monomiales des groupes de Lie resolubles exponentiels, Progress in Math., 82 (1990), 61-84
  • [11] H. Fujiwara and S. Yamagami, Certaines representations monomiales d'un groups de Lie resoluble exponentiel, Adv. Stud. Pure Math., 14 (1988), 153-190
  • [12] A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, Lecture Notes in Math., 992 (1983), 416-435
  • [13] R. Lipsman, Harmonic analysis on exponential solvablehomogeneous spaces: the algebraic or symmetric cases.Pacific J. Math., 140, No. 1 (1989), 117-147
  • [14] R. Lipsman, Induced representations of completelysolvableLie groups, Ann Scuola Norm. Sup. Pisa, 17 (1990), 127-165
  • [15] R. Lipsman, The multiplicity function on exponential and completely solvableho- mogeneousspaces,Geom. Dedicata, 39 (1991), 155-161
  • [16] R. Lipsman, The Penney-FujiwaraPlancherel formula for abeliansymmetric spaces and completely solvablehomogeneousspaces,Pacific J. Math., 151, No. 2 (1991), 265-295
  • [17] R. Lipsman, The Penney-FujiwaraPlancherel formula for homogeneous spaces, Rep- resentation Theory of Lie Groups and Lie Algebras(Puji-Kawaguchiko, 1990), 120- 139, World Sci. Pub., River Edge, NJ, 1992
  • [18] R. Lipsman, The Penney-Fujiwara Plancherelformula for symmetric spaces, The Orbit Method in Representation Theory (Copenhagen, 1988), 135-145, Birkhauser, Boston, 1990
  • [19] R. Penney, Abstract Plancherel Theorems and a Frobeniousreciprocity theorem, J. Funct. Anal., 18 (1975), 177-190
  • [20] N. Poulsen, On C-vectors and intertwining bilinearforms for representationsof Lie groups,J. Funct. Anal., 9 (1972), 87-120