Pacific Journal of Mathematics

A distance formula for algebras on the disk.

Christopher J. Bishop

Article information

Source
Pacific J. Math., Volume 174, Number 1 (1996), 1-27.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102365361

Mathematical Reviews number (MathSciNet)
MR1398371

Zentralblatt MATH identifier
0868.46041

Subjects
Primary: 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30]

Citation

Bishop, Christopher J. A distance formula for algebras on the disk. Pacific J. Math. 174 (1996), no. 1, 1--27. https://projecteuclid.org/euclid.pjm/1102365361


Export citation

References

  • [1] S. Axler and A. Shields, Algebras generated by analytic and harmonic functions, Indiana Univ. Math. J., 39 (1987), 631-638.
  • [2] C.J. Bishop, Approximating continuous functions by holomorphic and harmonic functions, Trans. Amer. Math. Soc, 311 (1989), 781-811.
  • [3] J. Cima, S. Janson, and K. Yale, Completely continuous Hankel operators on H and Bourgain algebras, Proc. Amer. Math. Soc, 105 (1989), 121-125.
  • [4] J. Cima, K. Stroethoff, and K. Yale, Bourgain algebras on the disk, Pacific J. Math., 160 (1993), 27-41.
  • [5] J. Cima and R. Timoney, The Dunford-Pettis property for certain planar uniform algebras, Michigan Math. J., 34 (1987), 99-104.
  • [6] J.B. Garnett, Bounded analytic functions, Academic Press, 1981.
  • [7] J.B. Garnett and P.W. Jones, The Corona theorem for Denjoy domains, Acta Math., 155 (1985), 27-40.
  • [8] P. Ghatage, S. Sun, and D. Zheng, A remark on Bourgain algebras on the disk, Proc. Amer. Math. Soc, 114 (1992), 395-398.
  • [9] P. Gorkin, K. Izuchi, and R. Mortini, Bourgain algebras of Douglas algebras, Can. J. Math., 44 (1992), 797-804.
  • [10] C. Guillory and K. Izuchi, Minimal envelopes of Douglas algebras and Bourgain algebras, Houston J. Math., 19 (1993), 201-222.
  • [11] K. Izuchi, Bourgain algebras of the disk, polydisk and ball algebras, Duke Math. J., 66 (1992), 503-519.
  • [12] J.R. Munkres, Topology; a first course,Prentice-Hall, 1975.
  • [13] C. Rickart, Generaltheory of Banach algebras, Van Nostrand, 1960.
  • [14] K. Yale, Bourgain algebras, In K. Jarosz, editor, Proceedings of conferenceon func- tion spaces, Lecture Notes in Pure and Appl. Math. vol. 136. Marcel Dekker, 1992.
  • [15] D. Zheng, Toeplitz and Hankel operators on the Bergman spaces of boundedsym- metric domains and the Bargman-Fock-Segal spaces, and some disk algebras,PhD thesis, SUNY, Stony Brook, 1992.