Proceedings of the Japan Academy, Series A, Mathematical Sciences

Smooth projective toric varieties whose nontrivial nef line bundles are big

Osamu Fujino and Hiroshi Sato

Full-text: Open access

Abstract

For any $n\geq 3$, we explicitly construct smooth projective toric $n$-folds of Picard number $\geq 5$, where any nontrivial nef line bundles are big.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 85, Number 7 (2009), 89-94.

Dates
First available in Project Euclid: 17 July 2009

Permanent link to this document
https://projecteuclid.org/euclid.pja/1247849907

Digital Object Identifier
doi:10.3792/pjaa.85.89

Mathematical Reviews number (MathSciNet)
MR2548019

Zentralblatt MATH identifier
1189.14056

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20]
Secondary: 14E30: Minimal model program (Mori theory, extremal rays)

Keywords
Toric variety Mori theory nef cone pseudo-effective cone

Citation

Fujino, Osamu; Sato, Hiroshi. Smooth projective toric varieties whose nontrivial nef line bundles are big. Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 7, 89--94. doi:10.3792/pjaa.85.89. https://projecteuclid.org/euclid.pja/1247849907


Export citation

References

  • V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. (2) 43 (1991), no. 4, 569–585.
  • O. Fujino, Notes on toric varieties from Mori theoretic viewpoint, Tohoku Math. J. (2) 55 (2003), no. 4, 551–564.
  • O. Fujino, On the Kleiman-Mori cone, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 5, 80–84.
  • O. Fujino and S. Payne, Smooth complete toric threefolds with no nontrivial nef line bundles, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 174–179.
  • O. Fujino and H. Sato, Introduction to the toric Mori theory, Michigan Math. J. 52 (2004), no. 3, 649–665.
  • W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993.
  • R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004.
  • K. Matsuki, Weyl groups and birational transformations among minimal models, Mem. Amer. Math. Soc. 116 (1995), no. 557, vi+133 pp.
  • S. Mori and S. Mukai, Classification of Fano $3$-folds with $B\sb{2}\geq 2$, Manuscripta Math. 36 (1981/82), no. 2, 147–162.
  • T. Oda, Torus embeddings and applications, Based on joint work with Katsuya Miyake. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 57, Tata Institute of Fundamental Research, Bombay, Springer-Verlag, Berlin-New York, 1978.
  • T. Oda, Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 15, Springer-Verlag, Berlin, 1988.
  • M. Reid, Decomposition of toric morphisms, in Arithmetic and geometry, Vol. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA., pp. 395–418, 1983.