Proceedings of the Japan Academy

De Rham cohomologies and stratifications. complex analytic de Rham cohomology, III

Nobuo Sasakura

Full-text: Open access

Article information

Source
Proc. Japan Acad., Volume 51, Number 1 (1975), 7-11.

Dates
First available in Project Euclid: 20 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195518721

Digital Object Identifier
doi:10.3792/pja/1195518721

Mathematical Reviews number (MathSciNet)
MR0508042

Zentralblatt MATH identifier
0323.32008

Subjects
Primary: 32C35: Analytic sheaves and cohomology groups [See also 14Fxx, 18F20, 55N30]

Citation

Sasakura, Nobuo. De Rham cohomologies and stratifications. complex analytic de Rham cohomology, III. Proc. Japan Acad. 51 (1975), no. 1, 7--11. doi:10.3792/pja/1195518721. https://projecteuclid.org/euclid.pja/1195518721


Export citation

References

  • [1] P. A. Griffiths: On the periods of certain rational integrals. I, II. Ann. of Math., 87, 461-495, 496-541 (1969).
  • [2] J. Leray: Probleme de Cauchy. III. Bull, de la Soc. Math, de France, 90, 81-180 (1959).
  • [3] J. Mather: Notes on Topological Stability, Mimeographed Notes. Harvard University (1971).
  • [4] N. Sasakura: Vanishing theorems with algebraic growth and algebraic division properties. Complex analytic De Rham cohomology. I. Proc. Japan Acad., 49 (9), 718-722 (1973).
  • [5] N. Sasakura: Vanishing theorems with algebraic growth and algebraic division properties. Complex analytic De Rham cohomology. II, Proc. Japan Acad., 50 (4), 292-295 (1974).
  • [6] N. Sasakura: Differential forms and Stratifications (Manuscript) (to appear in the seminar notes from RIMS, on the seminar of 'Complex Manifold' on October) (1974).
  • [7] N. Sasakura: Division and Asymptoyic Properties of Coherent Sheaves. Seminar Note No. 192. 'Hyperfunction and Linear Differential Equaiton. 1/ RIMS, pp. 37-327 (1973).
  • [8] R. Thorn: Ensembles et Morphismes stratifies. Bull. Amer. Math. Soc, 75, 240-284 (1969).
  • [9] H. Whitney: Tangents to an analytic variety. Ann. of Math., 81, 469-549 (1965).