Proceedings of the International Conference on Geometry, Integrability and Quantization

Expansions Over Adjoint Solutions for the Caudrey-Beals-Coifman System with $\mathbb{Z}_p$ Reductions of Mikhailov Type

Alexander B. Yanovski

Abstract

We consider the Caudrey-Beals-Coifman linear problem and the theory of the Recursion Operators (Generating Operators) related to it in the presence of $\mathbb{Z}_p$ reduction of Mikhailov type.

Article information

Source
Proceedings of the Fourteenth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2013), 253-268

Dates
First available in Project Euclid: 13 July 2015

Permanent link to this document
https://projecteuclid.org/ euclid.pgiq/1436795026

Digital Object Identifier
doi:10.7546/giq-14-2013-253-268

Mathematical Reviews number (MathSciNet)
MR3183944

Zentralblatt MATH identifier
1293.35271

Citation

Yanovski, Alexander B. Expansions Over Adjoint Solutions for the Caudrey-Beals-Coifman System with $\mathbb{Z}_p$ Reductions of Mikhailov Type. Proceedings of the Fourteenth International Conference on Geometry, Integrability and Quantization, 253--268, Avangard Prima, Sofia, Bulgaria, 2013. doi:10.7546/giq-14-2013-253-268. https://projecteuclid.org/euclid.pgiq/1436795026


Export citation