Osaka Journal of Mathematics

Lie algebras constructed with Lie modules and their positively and negatively graded modules

Nagatoshi Sasano

Full-text: Open access

Abstract

In this paper, we shall give a way to construct a graded Lie algebra $L(\mathfrak{g},\rho,V,{\cal V},B_0)$ from a standard pentad $(\mathfrak{g},\rho,V,{\cal V},B_0)$ which consists of a Lie algebra $\mathfrak{g}$ which has a non-degenerate invariant bilinear form $B_0$ and $\mathfrak{g}$-modules $(\rho, V)$ and ${\cal V}\subset \mathrm {Hom }(V,F)$ all defined over a field $F$ with characteristic $0$. In general, we do not assume that these objects are finite-dimensional. We can embed the objects $\mathfrak{g},\rho,V,{\cal V}$ into $L(\mathfrak{g},\rho,V,{\cal V},B_0)$. Moreover, we construct specific positively and negatively graded modules of $L(\mathfrak{g},\rho,V,{\cal V},B_0)$. Finally, we give a chain rule on the embedding rules of standard pentads.

Article information

Source
Osaka J. Math., Volume 54, Number 3 (2017), 533-568.

Dates
First available in Project Euclid: 7 August 2017

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1502092827

Mathematical Reviews number (MathSciNet)
MR3685591

Zentralblatt MATH identifier
06775421

Subjects
Primary: 17B70: Graded Lie (super)algebras
Secondary: 17B65: Infinite-dimensional Lie (super)algebras [See also 22E65]

Citation

Sasano, Nagatoshi. Lie algebras constructed with Lie modules and their positively and negatively graded modules. Osaka J. Math. 54 (2017), no. 3, 533--568. https://projecteuclid.org/euclid.ojm/1502092827


Export citation

References

  • N. Bourbaki: Lie groups and Lie algebra. Springer, Berlin, 1989.
  • V.G. Kac: Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izvestija vol.2 (1968), 1271–1311.
  • V.G. Kac: Infinite dimensional Lie algebras, third edition, Cambridge University Press, Cambridge, 1990.
  • H. Rubenthaler: Espaces préhomogènes de type parabolique, Lect. Math. Kyoto Univ. 14 (1982), 189–221.
  • H. Rubenthaler: Espaces préhomogènes de type parabolique, Thèse d'Etat, Université de Strasbourg, 1982.
  • H. Rubenthaler: Algèbres de Lie et espaces préhomogènes (Travaux en Cours), Hermann, Paris, 1992.
  • H. Rubenthaler: Graded Lie algebras associated to a representation of a quadratic algebra, arXiv:1410.0031v2 (2014).
  • N. Sasano: Lie algebras generated by Lie modules, Kyushu J. Math. 68 (2014), 377–403.
  • G. Shen: Graded modules of graded Lie algebras of Cartan type (II)-positive and negative graded modules, Sci. Senia Ser. A 29 (1986), 1009–1019.