Osaka Journal of Mathematics

Weak convergence of regular Dirichlet subspaces

Liping Li*, Toshihiro Uemura, and Jiangang Ying**

Full-text: Open access

Abstract

In this paper we shall prove the weak convergence of the associated diffusion processes of regular subspaces with monotone characteristic sets for a fixed Dirichlet form. More precisely, given a fixed 1-dimensional diffusion process and a sequence of its regular subspaces, if the characteristic sets of regular subspaces are decreasing or increasing, then their associated diffusion processes are weakly convergent to another diffusion process. This is an extended result of [14].

Article information

Source
Osaka J. Math., Volume 54, Number 3 (2017), 435-455.

Dates
First available in Project Euclid: 7 August 2017

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1502092822

Mathematical Reviews number (MathSciNet)
MR3685586

Zentralblatt MATH identifier
1375.31016

Subjects
Primary: 31C25: Dirichlet spaces
Secondary: 60F05: Central limit and other weak theorems

Citation

Li*, Liping; Uemura, Toshihiro; Ying**, Jiangang. Weak convergence of regular Dirichlet subspaces. Osaka J. Math. 54 (2017), no. 3, 435--455. https://projecteuclid.org/euclid.ojm/1502092822


Export citation

References

  • P. Billingsley: Convergence of probability measures, John Wiley & Sons, Inc., New York, Hoboken, NJ, USA, 1999.
  • Z-Q. Chen and M. Fukushima: Symmetric Markov Processes, Time Change, and Boundary Theory, Princeton NJ: Princeton University Press, 2012.
  • X. Fang, M. Fukushima and J. Ying: On regular Dirichlet subspaces of $H^1(I)$ and associated linear diffusions, Osaka J Math. 42 (2005), 27–41.
  • X. Fang, P. He and J. Ying: Dirichlet forms associated with linear diffusions, Chin. Ann. Math. Ser. B. 31 (2010), 507–518.
  • M. Fukushima and J. Ying: A note on regular Dirichlet subspaces. Proc. Amer. Math. Soc. 131 (2003), 1607–1610.
  • M. Fukushima and J. Ying: Erratum to: “A note on regular Dirichlet subspaces" [Proc. Amer. Math. Soc. 2003, 131 (5): 1607–1610]. Proc. Amer. Math. Soc. 132 (2004), 1559–1560.
  • M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes. extended, Berlin: Walter de Gruyter & Co., 2011.
  • K. Kuwae and T. Uemura: Weak convergence of symmetric diffusion processes, Probab. Theory Related Fields. 109 (1997), 159–182.
  • L. Li and J. Ying: On structure of regular subspaces for one-dimensional Brownian motion, arXiv: 1412.1896, to appear in Ann. Probab.
  • L. Li and J. Ying: Regular subspaces of Dirichlet forms, In: Festschrift Masatoshi Fukushima. In Honor of Fukushima's Sanju, World Scientific, (2015), 397–420.
  • U. Mosco: Composite media and asymptotic Dirichlet forms, J. Funct. Anal. 123 (1994), 368–421.
  • M. Reed and B. Simon: Methods of modern mathematical physics. I. Functional analysis. Academic Press, New York-London (1972).
  • B. Simon: A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Funct. Anal. 28 (1978), 377–385.
  • X. Song and L. Li: Regular Dirichlet subspaces and Mosco convergence, Chinese Ann. Math. Ser. A 37 (2016), 1–14.
  • D.W. Stroock and S.R.S. Varadhan: Multidimensional diffusion processes, Springer-Verlag, Berlin (2006).
  • W. Sun: Weak convergence of Dirichlet processes, Sci. China Ser. A. 41 (1998), 8–21.
  • M. Takeda: On a martingale method for symmetric diffusion processes and its applications, Osaka J. Math. 26 (1989), 605–623.