The Michigan Mathematical Journal

A Uniform Bound on the Brauer Groups of Certain log K3 Surfaces

Martin Bright and Julian Lyczak

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let U be the complement of a smooth anticanonical divisor in a del Pezzo surface of degree at most 7 over a number field k. We show that there is an effective uniform bound for the size of the Brauer group of U in terms of the degree of k.

Article information

Source
Michigan Math. J., Volume 68, Issue 2 (2019), 377-384.

Dates
Received: 31 May 2017
Revised: 6 November 2017
First available in Project Euclid: 18 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1550480562

Digital Object Identifier
doi:10.1307/mmj/1550480562

Mathematical Reviews number (MathSciNet)
MR3961221

Zentralblatt MATH identifier
07084767

Subjects
Primary: 14F22: Brauer groups of schemes [See also 12G05, 16K50]
Secondary: 14J20: Arithmetic ground fields [See also 11Dxx, 11G25, 11G35, 14Gxx] 14J26: Rational and ruled surfaces 14J28: $K3$ surfaces and Enriques surfaces

Citation

Bright, Martin; Lyczak, Julian. A Uniform Bound on the Brauer Groups of Certain log K3 Surfaces. Michigan Math. J. 68 (2019), no. 2, 377--384. doi:10.1307/mmj/1550480562. https://projecteuclid.org/euclid.mmj/1550480562


Export citation

References

  • [1] V. Cantoral-Farfán, Y. Tang, S. Tanimoto, and E. Visse, Effective bounds for Brauer groups of Kummer surfaces over number fields, J. Lond. Math. Soc. 97 (2018), no. 3, 353–376.
  • [2] J.-L. Colliot-Thélène and O. Wittenberg, Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines, Amer. J. Math. 134 (2012), no. 5, 1303–1327.
  • [3] P. K. Corn, Del Pezzo surfaces and the Brauer–Manin obstruction. Ph.D. thesis, University of California, Berkeley, ProQuest LLC, Ann Arbor, MI, 2005.
  • [4] J. González-Sánchez, M. Harrison, I. Polo-Blanco, and J. Schicho, Algorithms for Del Pezzo surfaces of degree 5 (construction, parametrization), J. Symbolic Comput. 47 (2012), no. 3, 342–353.
  • [5] A. Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, pp. 46–66, North-Holland, Amsterdam, 1968.
  • [6] A. Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, pp. 67–87, North-Holland, Amsterdam, 1968.
  • [7] A. Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, pp. 88–188, North-Holland, Amsterdam, 1968.
  • [8] Y. Harpaz, Geometry and arithmetic of certain log K3 surfaces, Annales de l’Institut Fourier, to appear, arXiv:151101285.
  • [9] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, 1977.
  • [10] E. Ieronymou, A. N. Skorobogatov, and Y. G. Zarhin, On the Brauer group of diagonal quartic surfaces, J. Lond. Math. Soc. (2) 83 (2011), no. 3, 659–672, With an appendix by Peter Swinnerton-Dyer.
  • [11] J. Jahnel and D. Schindler, On integral points on degree four del Pezzo surfaces, Israel J. Math. 222 (2017), no. 1, 21–62.
  • [12] J. Lyczak, Magma code for computing algebraic Brauer groups, http://pub.math.leidenuniv.nl/~lyczakjt/#code.
  • [13] Y. I. Manin, Cubic forms, Algebra, geometry, arithmetic, 2nd edition, N.-Holl. Math. Libr., 4, North-Holland Publishing Co., Amsterdam, 1986, Translated from the Russian by M. Hazewinkel.
  • [14] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1–3, 437–449.
  • [15] R. Newton, Transcendental Brauer groups of products of CM elliptic curves, J. Lond. Math. Soc. (2) 93 (2016), no. 2, 397–419.
  • [16] M. Orr and A. Skorobogatov, Finiteness theorems for K3 surfaces and abelian varieties of CM type, Compos. Math. 154 (2018), 1571–1592.
  • [17] P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math. 506 (1999), 85–116.
  • [18] A. N. Skorobogatov and Y. G. Zarhin, A finiteness theorem for the Brauer group of Abelian varieties and $K3$ surfaces, J. Algebraic Geom. 17 (2008), no. 3, 481–502.
  • [19] Sir Peter Swinnerton-Dyer, The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 113 (1993), 449–460.
  • [20] A. Várilly-Alvarado, Arithmetic of K3 surfaces, Geometry over nonclosed fields, number 5 in Simons symposia, pp. 197–248, Springer, 2017.
  • [21] A. Várilly-Alvarado and B. Viray, Abelian $n$-division fields of elliptic curves and Brauer groups of product Kummer and Abelian surfaces, Forum Math. Sigma 5 E26.