Kyoto Journal of Mathematics

Local Jacquet–Langlands correspondences for simple supercuspidal representations

Naoki Imai and Takahiro Tsushima

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We give a description of the local Jacquet–Langlands correspondence for simple supercuspidal representations via type theory. As a consequence, we show that the endoclasses for such representations are invariant under the local Jacquet–Langlands correspondence.

Article information

Source
Kyoto J. Math., Volume 58, Number 3 (2018), 623-638.

Dates
Received: 12 June 2015
Revised: 18 November 2016
Accepted: 30 November 2016
First available in Project Euclid: 19 June 2018

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1529373740

Digital Object Identifier
doi:10.1215/21562261-2017-0032

Mathematical Reviews number (MathSciNet)
MR3843393

Zentralblatt MATH identifier
06959094

Subjects
Primary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields
Secondary: 11L05: Gauss and Kloosterman sums; generalizations

Keywords
Jacquet–Langlands correspondence character Gauss sum Kloosterman sum

Citation

Imai, Naoki; Tsushima, Takahiro. Local Jacquet–Langlands correspondences for simple supercuspidal representations. Kyoto J. Math. 58 (2018), no. 3, 623--638. doi:10.1215/21562261-2017-0032. https://projecteuclid.org/euclid.kjm/1529373740


Export citation

References

  • [1] M. Adrian and B. Liu, Some results on simple supercuspidal representations of $\mathrm{GL}_{n}(F)$, J. Number Theory 160 (2016), 117–147.
  • [2] A.-M. Aubert, P. Baum, R. Plymen, and M. Solleveld, “Depth and the local Langlands correspondence” in Arbeitstagung Bonn 2013, Progr. Math. 319, Birkhäuser/Springer, Cham, 17–41.
  • [3] A. I. Badulescu, Correspondance de Jacquet–Langlands pour les corps locaux de caractéristique non nulle, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 695–747.
  • [4] P. Broussous, V. Sécherre, and S. Stevens, Smooth representations of $\mathrm{GL}_{m}(D)$, V: Endo-classes, Doc. Math. 17 (2012), 23–77.
  • [5] C. J. Bushnell, “Gauss sums and local constants for $\mathrm{GL}(N)$” in L-functions and Arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser. 153, Cambridge Univ. Press, Cambridge, 1991, 61–73.
  • [6] C. J. Bushnell and A. Fröhlich, Non-abelian congruence Gauss sums and $p$-adic simple algebras, Proc. Lond. Math. Soc. (3) 50 (1985), 207–264.
  • [7] C. J. Bushnell and G. Henniart, Local tame lifting for $\mathrm{GL}(N)$, I: Simple characters, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 105–233.
  • [8] C. J. Bushnell and G. Henniart, Correspondance de Jacquet–Langlands explicite, II: Le cas de degré égal à la caractéristique résiduelle, Manuscripta Math. 102 (2000), 211–225.
  • [9] C. J. Bushnell and G. Henniart, Local tame lifting for $\mathrm{GL}(n)$, III: Explicit base change and Jacquet–Langlands correspondence, J. Reine Angew. Math. 580 (2005), 39–100.
  • [10] C. J. Bushnell and G. Henniart, The Local Langlands Conjecture for $\mathrm{GL}(2)$, Grundlehren Math. Wiss. 335, Springer, Berlin, 2006.
  • [11] C. J. Bushnell and G. Henniart, The essentially tame Jacquet–Langlands correspondence for inner forms of $\mathrm{GL}(n)$, Pure Appl. Math. Q. 7 (2011), 469–538.
  • [12] C. J. Bushnell and G. Henniart, Langlands parameters for epipelagic representations of $\mathrm{GL}_{n}$, Math. Ann. 358 (2014), 433–463.
  • [13] C. J. Bushnell and P. C. Kutzko, The Admissible Dual of $\mathrm{GL}(N)$ via Compact Open Subgroups, Ann. of Math. Stud. 129, Princeton Univ. Press, Princeton, 1993.
  • [14] P. Deligne, Cohomologie étale, Lecture Notes in Math. 569, Springer, New York, 1977.
  • [15] P. Deligne, D. Kazhdan, and M.-F. Vigneras, “Représentations des algèbres centrales simples p-adiques” in Representations of Reductive Groups over a Local Field, Hermann, Paris, 1984, 33–117.
  • [16] P. Gérardin, “Facteurs locaux des algèbres simples de rang $4$, I” in Reductive Groups and Automorphic Forms, I (Paris, 1976/1977), Publ. Math. Univ. Paris VII 1, Univ. Paris VII, Paris, 1978, 37–77.
  • [17] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer, New York, 1970.
  • [18] G. Henniart, “Correspondance de Jacquet–Langlands explicite, I: Le cas modéré de degré premier” in Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math. 108, Birkhäuser Boston, Boston, 1993, 85–114.
  • [19] N. Imai and T. Tsushima, Affinoids in the Lubin-Tate perfectoid space and simple supercuspidal representations, I: Tame case, preprint, arXiv:1308.1276v4 [math.NT].
  • [20] N. Imai and T. Tsushima, Affinoids in the Lubin-Tate perfectoid space and simple supercuspidal representations, II: Wild case, preprint, arXiv:1603.04693v2 [math.NT].
  • [21] K. Kariyama, Endo-class and the Jacquet-Langlands correspondence, Kyoto. J. Math. 55 (2015), 299–320.
  • [22] A. Knightly and C. Li, Simple supercuspidal representations of $\mathrm{GL}(n)$, Taiwanese J. Math. 19 (2015), 995–1029.
  • [23] M. Reeder and J.-K. Yu, Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), 437–477.
  • [24] V. Sécherre, Représentations lisses de $\mathrm{GL}(m,D)$, I: Caractères simples, Bull. Soc. Math. France 132 (2004), 327–396.
  • [25] V. Sécherre, Représentations lisses de $\mathrm{GL}(m,D)$, II: $\beta$-extensions, Compos. Math. 141 (2005), 1531–1550.
  • [26] V. Sécherre, Représentations lisses de $\mathrm{GL}_{m}(D)$, III: Types simples, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 951–977.
  • [27] V. Sécherre and S. Stevens, Représentations lisses de $\mathrm{GL}_{m}(D)$, IV: Représentations supercuspidales, J. Inst. Math. Jussieu 7 (2008), 527–574.
  • [28] V. Sécherre and S. Stevens, Smooth representations of $\mathrm{GL}_{m}(D)$, VI: Semisimple types, Int. Math. Res. Not. IMRN 2012, no. 13, 2994–3039.
  • [29] A. J. Silberger and E.-W. Zink, An explicit matching theorem for level zero discrete series of unit groups of $\mathfrak{p}$-adic simple algebras, J. Reine Angew. Math. 585 (2005), 173–235.
  • [30] P. Xu, A remark on the simple cuspidal representations of $\mathrm{GL}(n,F)$, preprint, arXiv:1310.3519v2 [math.NT].