Kyoto Journal of Mathematics

Boundary limits of monotone Sobolev functions in Musielak–Orlicz spaces on uniform domains in a metric space

Takao Ohno and Tetsu Shimomura

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Our aim in this article is to deal with boundary limits of monotone Sobolev functions in Musielak–Orlicz spaces on uniform domains in a metric space.

Article information

Source
Kyoto J. Math., Volume 57, Number 1 (2017), 147-164.

Dates
Received: 31 July 2015
Revised: 7 December 2015
Accepted: 1 February 2016
First available in Project Euclid: 11 March 2017

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1489201234

Digital Object Identifier
doi:10.1215/21562261-3759549

Mathematical Reviews number (MathSciNet)
MR3621783

Zentralblatt MATH identifier
1376.30045

Subjects
Primary: 31B25: Boundary behavior
Secondary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Keywords
monotone Sobolev functions Lindelöf theorem Musielak–Orlicz spaces variable exponent

Citation

Ohno, Takao; Shimomura, Tetsu. Boundary limits of monotone Sobolev functions in Musielak–Orlicz spaces on uniform domains in a metric space. Kyoto J. Math. 57 (2017), no. 1, 147--164. doi:10.1215/21562261-3759549. https://projecteuclid.org/euclid.kjm/1489201234


Export citation

References

  • [1] A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts Math. 17, Eur. Math. Soc., Zürich, 2011.
  • [2] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013.
  • [3] F. Di Biase, T. Futamura, and T. Shimomura, Lindelöf theorems for monotone Sobolev functions in Orlicz spaces, Illinois J. Math. 57 (2013), 1025–1033.
  • [4] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011.
  • [5] T. Futamura, Lindelöf theorems for monotone Sobolev functions on uniform domains, Hiroshima Math. J. 34 (2004), 413–422.
  • [6] T. Futamura and Y. Mizuta, Lindelöf theorems for monotone Sobolev functions, Ann. Acad. Sci. Fenn. Math. 28 (2003), 271–277.
  • [7] T. Futamura and Y. Mizuta, Boundary behavior of monotone Sobolev functions on John domains in a metric space, Complex Var. Theory Appl. 50 (2005), 441–451.
  • [8] T. Futamura, T. Ohno, and T. Shimomura, Boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space, Rev. Mat. Complut. 28 (2015), 31–48.
  • [9] T. Futamura and T. Shimomura, Lindelöf theorems for monotone Sobolev functions with variable exponent, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), 25–28.
  • [10] T. Futamura and T. Shimomura, On the boundary limits of monotone Sobolev functions in variable exponent Orlicz spaces, Acta. Math. Sin. (Engl. Ser.) 29 (2013), 461–470.
  • [11] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688.
  • [12] P. Koskela, J. J. Manfredi, and E. Villamor, Regularity theory and traces of $\cal A$-harmonic functions, Trans. Amer. Math. Soc. 348, no. 2 (1996), 755–766.
  • [13] H. Lebesgue, Sur le probléme de Dirichlet, Rend. Circ. Mat. Palermo 24 (1907), 371–402.
  • [14] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, J. Geom. Anal. 6 (1996), 433–444.
  • [15] J. J. Manfredi and E. Villamor, Traces of monotone functions in weighted Sobolev spaces, Illinois J. Math. 45 (2001), 403–422.
  • [16] Y. Mizuta, Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 315–326.
  • [17] Y. Mizuta, Potential Theory in Euclidean Spaces, GAKUTO Internat. Ser. Math. Sci. Appl. 6, Gakkōtosho, Tokyo, 1996.
  • [18] J. Väisälä, Uniform domains, Tohoku Math. J. (2) 40 (1988), 101–118.
  • [19] E. Villamor and B. Q. Li, Boundary limits for bounded quasiregular mappings, J. Geom. Anal. 19 (2009), 708–718.
  • [20] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math. 1319, Springer, Berlin, 1988.