Journal of Mathematics of Kyoto University

Thin Schubert cells of codimension two

Shinsuke Odagiri

Full-text: Open access

Abstract

A condition on a matroid of rank $n-2$ for the corresponding thin Schubert cell being nonempty is determined. A necessary and sufficient condition for $k$ and $n$ so that the closure of a thin Schubert cell in $G(k,n)$ is always a union of thin Schubert cells is given.

Article information

Source
J. Math. Kyoto Univ., Volume 48, Number 2 (2008), 265-275.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250271412

Digital Object Identifier
doi:10.1215/kjm/1250271412

Mathematical Reviews number (MathSciNet)
MR2436737

Zentralblatt MATH identifier
1206.14073

Subjects
Primary: 14M15: Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35] 05B35: Matroids, geometric lattices [See also 52B40, 90C27]

Citation

Odagiri, Shinsuke. Thin Schubert cells of codimension two. J. Math. Kyoto Univ. 48 (2008), no. 2, 265--275. doi:10.1215/kjm/1250271412. https://projecteuclid.org/euclid.kjm/1250271412


Export citation