Journal of Symbolic Logic

Kueker's Conjecture for Superstable Theories

Steven Buechler

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We prove that if every uncountable model of a first-order theory $T$ is $\omega$-saturated and $T$ is superstable then $T$ is categorical in some infinite power.

Article information

Source
J. Symbolic Logic, Volume 49, Issue 3 (1984), 930-934.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183741633

Mathematical Reviews number (MathSciNet)
MR758944

Zentralblatt MATH identifier
0577.03015

JSTOR
links.jstor.org

Citation

Buechler, Steven. Kueker's Conjecture for Superstable Theories. J. Symbolic Logic 49 (1984), no. 3, 930--934. https://projecteuclid.org/euclid.jsl/1183741633


Export citation