Journal of Symbolic Logic

Asymptotic theory of modules of separably closed fields

Françoise Point

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the reduct to the module language of certain theories of fields with a non surjective endomorphism. We show in some cases the existence of a model companion. We apply our results for axiomatizing the reduct to the theory of modules of non principal ultraproducts of separably closed fields of fixed but non zero imperfection degree.

Article information

Source
J. Symbolic Logic, Volume 70, Issue 2 (2005), 573-592.

Dates
First available in Project Euclid: 1 July 2005

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1120224729

Digital Object Identifier
doi:10.2178/jsl/1120224729

Mathematical Reviews number (MathSciNet)
MR2140047

Zentralblatt MATH identifier
1119.03032

Citation

Point, Françoise. Asymptotic theory of modules of separably closed fields. J. Symbolic Logic 70 (2005), no. 2, 573--592. doi:10.2178/jsl/1120224729. https://projecteuclid.org/euclid.jsl/1120224729


Export citation

References

  • T. Blossier Sous-groupes infiniment définissables du groupe additif d'un corps séparablement clos in ``Ensembles minimaux localement modulaires'', Ph.D. thesis, Université Paris 7,2001.
  • L. Blum, F. Cucker, M. Shub, and S. Smale Complexity and real computation, Springer-Verlag New-York Inc.,1998.
  • Z. Chatzidakis and E. Hrushowski Some asymptotic results on fields, Bulletin of Symbolic Logic, vol. 7 (2001), p. 105, Abstract for the Logic Colloquium 2000.
  • P. M. Cohn Skew fields, Encyclopedia of mathematics and its applications, vol. 57, Cambridge University Press,1995.
  • P. Dellunde, F. Delon, and F. Point The theory of modules of separably closed fields 1, Journal of Symbolic Logic, vol. 67 (2002), no. 3, pp. 997--1015.
  • J. Denef The Diophantine problem for polynomial rings of positive characteristic, Logic Colloquium 78 (M. Boffa, D. van Dalen, and K. McAloon, editors), North-Holland Publishing Company,1979, pp. 131--145.
  • K. R. Goodreal and R. B. Warfield Jr. An introduction to noncommutative rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press,1989.
  • N. Jacobson Basic algebra I, second ed., Freeman,1985.
  • C. U. Jensen and H. Lenzig Model theoretic algebra, Gordon and Breach Science Publishers,1989.
  • O. Ore Theory of non-commutative polynomials, Annals of Mathematics, vol. 34 (1933), pp. 480--508.
  • M. Singer and M. van der Put Galois theory of difference equations, Lecture Notes in Mathematics, vol. 1666, Springer,1997.
  • B. Stenström Rings of quotients, Springer-Verlag,1975.
  • M. Ziegler Model theory of modules, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 149--213.